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Two approaches to the Einstein initial value problem for vacuum gravitational fields are considered. In the
first, the metric of a spacelike slice is prescribed arbitrarily and it is shown that momenta satisfying the con-
straints can be constructed by exploiting the well-known relation of three of the four constraints to the three—
dimensional coordinate transformation group. Specifically, it is shown that there exists a coordinate mapping

of a certain specified set of functions onto momenta satisfying the constraints for a specified 3-metric. A
further interpretation of this procedure is discussed. In the second approach the 3-geometry of a spacelike
slice is specified up to a conformal factor, It is shown that, using a coordinate transformation method similar
to the above, transverse traceless momenta can be constructed and that this construction depends essentially
only on the conformal geometry of the spacelike hypersurface, The remaining constraint is satisfied by a choice
of the conformal factor. As a result, it follows that the initial value equations can be satisfied by mapping cer-
tain specified sets of functions onto solutions by using coordinate transformations and a group of scale trans-
formations which include conformal transformation of the metric. This is significant because the unconstrained
initial data (gravitational degrees of freedom) are represented by a pair of scale-invariant transverse, trace-
less tensors of weight f; These objects, in turn, give irreducible representations of the coordinate and scaling
groups which are used to effect solutions of the initial value equations,

1, INTRODUCTION

The purpose of this paper is to show that the initial
data satisfying the Einstein gravitational constraint
equations can be constructed by mapping certain
specified sets of arbitrary functions to solutions in
such a way that the unconstrained data (gravitational
degrees of freedom) are left essentially invariant.
The mappings involve three-dimensional coordinate
transformation of the three-dimensional metric. The
unconstrained data are represented by a pair of scale
invariant transverse traceless tensors of weight 3.
These objects give irreducible representations of the
groups which transform the sets of arbitrary func-
tions to solutions.

The initial value problem?! arises because four of
Einstein’s ten field equations for gravitation involve
only initial data. In the Hamiltonian form of general
relativity,2>3 the data which must be given compa-
tibily on an initial spacelike hypersurface are the
metric v, on the slice (canonical field coordinate)
and a tensor density 7% measuring the bending of the
slice relative to the surrounding space~time by
means of the relation 79 = y1/2 (Ky — K%), where
K9 ig the second fundamental tensor of the surface,
K is its trace,and y is the determinant of y,,. There-
fore, 7% measures “extrinsic curvature” and plays
the role of canonical field momentum, Thus, the pro-
blem of initial conditions is to give y,, and 7% in such
a way that the four constraint equations are satisfied
at the initial instant. I the initial data are consistent
on the initial surface, they continue to satisfy the con-

straints for a finite time into the future as a conse-
quence of Einstein's dynamical equations and the con-
tracted Bianchi identities satisfied by the latter,
Satisfactory understanding of the initial value prob-
lem is essential for full appreciation of the dynamics
of gravitational fields, for the constraints serve as
(vanishing) Hamiltonians in the canonical representa-
tion of dynamics. Therefore, they contain implicitly
the complete description of gravitational dynamics in
Einstein's theory.

The key issue in the initial value problem is to de-
termine which variables may be specified freely on
the initial hypersurface and which are to be thought
of as constrained. Among the former, one expects
some information depending merely on the choice of
space-time coordinates and some corresponding to
true gravitational degrees of freedom. A number of
schemes have been proposed in order to settle this
issue in a physically satisfying manner. Some of
these approaches do not work directly with the can-
onical momentum 7%, notably the “thin sandwich”
approach? which introduces in place of 7% other less
physically meaningful variables, The sandwich prob-
lem is not dealt with in the present paper. All
approaches, however, do deal more or less directly
with the metrie y,,. This is natural because, if the
initial surface is designated { = const, the only coef-
ficients of the space-time metricg , whose second
time derivatives appear in Einstein's equations are
those corresponding to the spacelike 3-metric on the
surface { = const. From this fact, plus the fact that
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the three-dimensional coordinate system contains no
physical information and may itself be changing ar-
bitrarily in time, one concludes that the dynamical
object in general relativity is three-dimensional spa-
tial geometry. This 3-geometry 3§ is described by
an equivalence class of metrics with respect to dif-
feomorphisms D;. In other words, all metrics y,,
which transform into each other by coordinate map-
pings represent one and the same 3-geometry, In

the following, by “metric” we refer to component
functions v,,(x) representing the metric tensor field
as displayed in a definite coordinate system; the term
“3-geometry” refers to the entire D, -equivalence
class of y,(x). Therefore, specification of the metric
(i.e., 3§ plus a coordinate system) requires more
information than specification of a three-geometry
alone. Superspace,® the collection of all 3-geomet-
ries, is a configuration space for Einstein's geometro-
dynamics. It is therefore natural in treating the ini-
tial value problem to assume that the three—geo-
metry can be specified freely while the momentum
can be constructed in accordance with the constraints.
In the early sections of the following work, it is con-
venient to adopt this point of view or the related one
in which the 3-metric is arbitrarily specified,

It has long been known that three of the four con-
straints are intimately related to the group of all
three-dimensional coordinate mappings D,.6 Because
the constraints are covariant, it would not at first
appear to be possible to use the coordinate group to
effect a solution to these equations. Nevertheless, it
turns out that there is procedure available for doing

just this. In this paper, it is shown explicitly how a
set of arbitrary functions can be mapped by a certain
coordinate transformation onto local solutions of the
initial value equations, with the metric completely
fixed in advance, Further,an alternative interpreta-
tion of this process is given which indicates that it
can also be viewed as an explicit method of choosing
coordinate conditions, for a fixed 3-geometry (not a
fixed metric), such that a given set of arbitrary func-
tions will satisfy the constraints. On the other hand,
inthe last three sections we do not fully specify either
the metric or the 3~geometry. Rather, we use the
method of specifying the metric only up to a conformal
factor. This useful mathematical technique is known
from the work of Lichnerowicz? and others,1:8 How-
ever, the compelling physical arguments for this
approach were only recently demonstrated.® It was
shown that conformal 3-geometry is characterized by
a covariantly transverse and traceless tensor and that
it therefore represents “pure spin-two” geometrody-
namics. In addition, it was shown that the existence of
this tensor is closely related to the fact that there is
a group of scale transformations C, which include con-
formal transformations of the metric, that leave the
unconstrainedinitial data invariant. Asa result,there
are two groups, C and D;, which are fundamental to
the initial value problem. In this paper, it is shown
that by the action of these “gaugelike” groups, cer-
tain specified sets of arbitrary functions can be map-
ped onto solutions of initial value equations.

2. INITIAL VALUE PROBLEM IN CANONICAL
VARIABLES

In terms of the standard canonical variables, the con-
straint equations for empty space—time have the form3

V, 1% =0, (1)
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y/2(n, me — 1/202)— y1/2R = 0, 2)

Here, 7, is the metric on a spacelike hypersurface,
R is its scalar curvature, y its determinant, and Y%
denotes the associated covariant derivative. Geo-
metrically, the initial value equations (1) and (2) are
simply the Gauss—Codazzi equationsi® for Ricci-
flat space~times?1 4R , = 0, that is, necessary and
sufficient conditions that a slice with metric ¥,, and
extrinsic curvature 7%’ can be embedded in some
ipace—-time satisfying the Einstein field equations
R, =0,

One can regard the transversality conditions (1) and
the Hamiltonian constraint (2) as four equations on
the twelve functions vy, 7?. However, four of these
variables can be fixed in advance by choosing four
space~time coordinate conditions, so the general
solution should contain four essential arbitrary func-
tions of three spatial coordinates. This familiar con-
clusion!2 is just the expected one for a field with two
degrees of freedom per space point, in accord with
familiar result that there are two independent states
of polarization for gravitational waves,

Which variables should be regarded as unconstrained,
and, therefore freely specifiable on the spacelike
slice? Let us initially choose the metric y,, in ad-
vance and construct the appropriate momenta 7@,
One recognizes that three of the six y,, may be re-
garded as containing only information about the three-
dimensional coordinate system on the slice. The
other threefix the intrinsic geometry 3G which speci-
fies a point in superspace. In this approach one
argues that there are four constraints on the six 79,
leaving two of them as essential arbitrary functions.
There are also the three arbitrary functions specify-
ing 3G, giving a total of five, which would appear to be
one too many, The dynamically superfluous variable
owes its presence to the circumstance that no condi-
tion has been chosen regarding choice of “time”, that
is, the manner of slicing up space-time. One often
regards this extra variable corresponding to “time”
as residing in the metric. For example, in Misner's
Mixmaster Universe,'3 the determinant of v, (i.e.,
“yolume” of the slice) plays the role of “time”. How-
ever, there has been no universally accepted method
of extracting time directly from the 3-geometry. In
fact, Kuchafl4 has successfully applied an“extrinsic
time” representation of gravitational dynamics, in
which time is not regarded as residing in the intrin-
sic 3-geometry, but is a momentumlike variable in-
stead. Another inconvenience of the above approach
is that the Hamiltonian constraint (2) is quadratic
algebraic in the momenta. As a consequence, it is
not obvious how to single out momentum components
or functions of these components to regard as de-
pendent in the simultaneous solution of all four con-
straints. Nevertheless, it is easy to show that with
Y fixed, there exist solutions of the initial value
equaticons involving two arbitrary functions of three
variables and three arbitrary functions of two vari-
ables. The latter correspond, for example, to values
of three of the 79 (for example, 73,723 733) on a 2-
surface (for example, x3 = const). These functions
of only two variables are unimportant for the pur-
poses of the present paper and will not be considered
further.
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3. MAPPING ONTO TRANSVERSE MOMENTA

If we consider the metric y,(x) to be fixed, then
the momentum constraints are a system of three
linear first-order partial differential equations
for the n%:

5 'bﬂab - abﬂ»ab + nbc{b a C} =0, (3)

where the Christoffel symbols are now treated as
known functions of the coordinates. It is well known
that there is an intimate connection between the mo-
mentum constraints and the group of three-dimen-
sional coordinate transformations with respect to
which the standard canonical formalism is convari-
ant.® For example, the expressionl®

[ 2¢,7,m9)d3x

generates spatial Lie derivatives along £¢ of any
function of the canonical variables with which its
Poisson bracket is taken, provided the function is not
explicitly coordinate dependent,

A related approach,15 also well known, employs the
Hamilton—-Jacobi version of dynamics, In anology to
the relation p; = 9S/8¢¢ of classical mechanics, we
put

79 = 65/ 6v,,

where S is the Jacobi action, or Hamilton's principal
functional, and §/6y,, denotes functional differentia-
tion with respect to the metric. If S is any functional
of y,, that does not depend explicitly on the choice of
coordinates on the 3-space, then the conditions (1)
are automatically satisfied. This conclusion follows
in a manner exactly analogous to the way that the
contracted Bianchi identities Gy, = 0 follow from
the four-dimensional coordinate invariance of the
full Einstein action principle of general relativity. In
these well-known results, one recognizes a deep con-
nection between the vanishing covariant divergence of
a symmetric tensor and the coordinate invariance of
anappropriate functional. This connection has another
manifestation first exploited by Pereira,'6 who was
concerned not with the present problem but with the
space-time equations [(— g)1/2T#], = 0 of Einstein's
theory. Reasoning similar in part is applied below.
However, the present application and the general in-
terpretation of the process presented here are those
of the present author.

We are concerned with the construction of transverse
momenta, specifically, with how they may be generat-
ed by three-dimensional coordinate mappings. Let
there be given a metric v, (x) and an arbitrary set of
functions 72%(¥), The metric is defined in one-coordi-
nate system (x); whereas, the momentum 79 (¥) is de-
fined in another set of coordinates (x). We are con-
cerned with a mapping © : x— x defined by some
functions x? = 92(x). The objective is to find the
mapping © that transforms 7%%(x) onto solutions 79 (x)
of Egs. (3). In the process, the transversality con-
ditions are converted into a system of three second-
order equations in three unknown functions 64(x). The
metric y,, (x) is specified in a given coordinate system
(x). Define %%(x) = 97%/3x% which are known func-
tions. Then the transversality constraint in barred
variables is equivalent to

{p @ .} 7% + he(x) =0, @)

where, according to the familiar rule of transforma-
tion,

8 axe o | 00 %
dxd 9xb 9x°  axe axtoxc
Making this substitution, multiplying by 2x7/8x¢, and
summing on ¢ lead tol7

-, 2287

oe 0707 b agn +ib897_
oxboxe

em
p = — =0 5
dxb oxc ax? ®)

+ T-Tbc{ m 4 n}

as the equations governing 6%x). Were this only one
equation for one function 6, it would be classified!8
as “semilinear” because the second derivatives appear
linearly with coefficients 7%¢ depending only on the

x. Even in this case, however, the equation would not
necessarily be of a definite type. In the case of space,
as opposed to space—time, one would not expect there
to be any preferred direction and, therefore, one
might suspect the equation to be of elliptic type. Ellip-
ticity would obtain provided 7%%A 2, > 0 for all real
A, = 0, On the contrary, however, there is no reason
to suppose the 7? to form coefficients of a positive
definite quadratic form, This is easily seen from the
fact that traceless momenta exist and play a funda-
mental role in the initial value problem (See sec. 6).
The momentum tensor has no fixed signature in
general. Of course, Egs, (5) form a nonlinear system
of three equations for three unknown functions of a
kind concerning which apparently no useful general
results are know,18 Therefore, although in space we
expect no preferred direction, we nevertheless single
one out only in order to be able to apply the Cauchy-
Kowalewski existence theorem.l® The equations can
be partially summed and rearranged so as to have the
form

T Groaysano (g s 22°), ®)
(9%3)2 axb
where the x3 direction is singled out only to show that
the equations assume the “normal” form provided
733 2 0, Assuming analyticity and invoking the
Cauchy-Kowalewski theorem,1® we see that in a suf-
ficiently small domain including the surface x3 =
const, the 67 exist and are unique up to functions of
two variables (¥! and ¥2 in the present case), that is,
up to the values of 67 and 267/3x3 on x3 = const,
which values can be chosen arbitrarily.

Supposing that the functions x¢ = 8%(x) are known, we
use them to transform the functions 7%(x) as tensor
densities of weight unity by the usual rule

axd/]oxm ox»

The functions 7?%(x) were constructed in such a way
that they automatically satisfy the transversality re-
quirement.20

This result deserves a brief discussion because, at
first sight, there might seem to be too much arbit-
rariness in 7% (x), which is seen to depend on six
arbitrary functions of three variables 77 (x). How-
ever, three of the six may be regarded as carrying
information about a coordinate system, in this case,
the coordinate system (x). Although in this procedure
one regards the coordinates (x) as fixed, the auxiliary
coordinates (x) are completely arbitrary and may
therefore be transformed before the construction of
a solution to (6) by means of any mapping A: X > X,
This means we start from 77 (x) instead of 777 (x) in
determining the solution to (6). However, this new
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solution ©: ¥ - x is simply given by & = ©.A71,
where o denotes the composition of mappings. The
details of the proof will not be given as it follows
readily from the tensor character of the transversal-
ity conditions (1). It follows that all diffeomorphical-
ly equivalent tensor densities 77# lead to the same
7% (x), Hence the 7% (x) depend on only three essen-
lial arbitrary functions of three variables, as expect-
ed. It was suggested earlier (Sec. 1) that the trans-
versality condition can be satisfied by choosing three-
dimensional coordinate conditions. In the procedure
presented here, however, no coordinate conditions

are imposed. The 3-geometry and the coordinates (x)
in which the metric is displayed are picked freely
before transverse momenta are constructed. There
are no a priori restrictions on the coordinates (x).
Nevertheless, we now describe another interpretation
of the coordinate mapping procedure which does show
clearly the relation between the transversality con-
ditions and coordinate conditions.

In the mapping procedure, one can equally well con-
sider the inverse mapping ©~1:x = ¥ and allow it to
act on the metric while the momentum functions 74 (¥)
are in the privileged position of being held fixed. Let
us adopt this second viewpoint for the present. The
mapping, taking y,, (x) to %, (x), can in no way influence
the intrinsic 3-geometry itself. Therefore, given (i)
any set of functions 7% (¥) and (ii) any 3-geometry
(point in superspace), then there exists a metric 7, (x)
describing the given 3-geometry such that V 7 =0,
Again, the reason that thereare not actually six essen-
tial arbitrary functions in the transverse momentum,
is that all diffeomorphically equivalent sets of mo-
mentum functions are physically and geometrically
equivalent, as discussed earlier.

Despite the seeming reciprocity in the treatment of
v, and 72 afforded by the mapping method, there is
still an inherent difference for the following reason.
Given a metric in any coordinate system, the 3-geo-
metry is determined. But given a tensor 74 in any
coordinates, its relevant properties (e.g.,divergence,
trace) depend on knowing the metric in the same co-
ordinate system, Unlike the metric, the momentum is
not sufficient unto itself to define its own invariant
properties.

We see that the method of constructing coordinate
mappings as a way of treating the momentum con-
straint has two interpretations, of which one lends it-
self naturally to the view that the momentum con-
straints can be satisfied, for a given 3-geometry, by
imposing coordinate conditions, It has been shown
that the appropriate coordinate systems are generat-
ed by the mapping © that satisfies (6). The existence
of © and its two interpretations give a further reflec-
tion of well-known and deep connections which ex-
ist between the momentum constraints and the three-
dimensional coordinate group.

4. HAMILTONIAN CONSTRAINT

Thus far, the Hamiltonian constraint X = 0 has not
been taken into account, If we regard the metric as
given, then ¥ is quadratic algebraic in the momentum
components, which prevents any neat method of solu-
tion because it is coupled to the momentum problem.
What one might desire, particularly on physical
grounds, is to decouple the momentum and Hamiltonian
constraints, but this cannot be achieved if one regards
the initial intrinsic 3-geometry as completely fixed in
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advance. However, the decoupling can be achieved in
connection with a different choice of variables arbi-
tarily specifiable on the initial surface. This treat-
ment is dealt with in Sec. 6. For the rest of the pre-
sent section, we continue to regard either the full
metric or the intrinsic 3-geometry as fixed.

To solve Eq. (2) simultaneously with constructing the
map ©, such that © will map the 7% onto solutions of
the complete initial value equations, it is necessary
to choose another function to be unknown. In accord
with our desire to keep the metric fixed, we choose
one of the 7%, say 711, to be dependent, First we write

= 0 in terms of the functions y,, (x) and 7% (¥),
whlch areknown except for 711, and the unknown trans-
formation coefficients 367/ ax“ Then we solve alge-
braically for 711 as a function of the quantities listed
above. The algebra is unenlightening and a little
messy, so we omit it here, The resulting expression
can then be substituted into Eq. (6). Observe that 711
enters this expressiononly by means of 711 and g7tl/
0xl. Therefore, no terms of the type 3297/(x3)2 are
introduced in eliminating 711, Since the system re-
tains the Cauchy normal form,19 solutions exist under
the same conditions as in the previous section, ex-
cept that 711 is no longer arbitrary, Hence when 7 %(x)
is constructed by means of ©,it will be a solution to
all the constraints with y, (x) fixed and will contain
only /wo essential arbitrary functions of three vari-
ables.

As in the previous section, we may also consider
that the momentum 7% (x) is in the privileged posi-
tion of being fixed in advance while the mapping acts
on the metric v, (r). Now, however, only five of the
six b are arbitrary, the other being the unknown
function permitting an algebraic elimination of the
Hamiltonian constraint, We conclude that given the
momentum 7% of which functions five are arbitrary,
and given any 3-geometry, there exists a metric
representation _y,,(x) of the 3-geometry such that

T, 7% =0and & = 0.

Although the problem of interest here is the initial
value problem for vacuum space-times, there is a
simple extension of the above result for the case
when sources are present. There, one may specify in
addition to ¥, (x) and five of the six 7% also the cur-
rent density $4(x) of the sources and their energy
density €(x) as functions of the coordinates. The
gravity initial value equations for this case,

T, M = — %8¢, (7

y~V2(nebn, — 1/272)— y1/2R = ¢, (8)

again can be converted and solved by the coordinate
mapping method just as above,2?

5. CONFORMAL MAPPINGS AND C-MAPPINGS

The Hamiltonian constraint was accounted for by
choosing one of the 7% to be dependent. This is a
rather inelegant method, but we saw no other choice
because of the requirement that the metric or the
3-geometry be completely fixed in advance. However,
we shall see below that a much better method is
available if the transverse momenta constructed by
the map © are also traceless. In this case, we shall
show that the Hamiltonian constraint can be de-
coupled from the momentum constraints and can be
accounted for by a method closely related to conform-
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al mapping of the metric. Although we have to aban-
don the idea that the 3-geometry is completely fixed
in advance, in return, we gain a more satisfying view
of the initial value problem.

A “TT” tensor is one that is traceless and has
vanishing covariant divergence (transverse). Sup-
pose that the momentum tensor density is transverse
and traceless relative to a given metric y,,, that is
7% = 725, We wish to show that there is a certain
scale transformation denoted by C, which preserves
the TT character of the momentum. Define the map-
ping®
Ci%p = v = 9*7a,
7% — T = ¢rdqnad, 9

where ¢(x) is an arbitrary function, The first half of
the C transformation is merely a conformal transfor-
mation of the metric. This leads to a transformation
of the Christoffel symbols given by

{bac}_’{bac} :{bac}
+2071(8£0,¢ + 623, ¢ — 1,7 290, 0).

Substituting this expression and the transformation
rule for 7% into V, 7% yields

vbﬂab = ¢>4Vb ﬂab,

if 72 is traceless. Therefore,the C-map has the
fundamental property that if 7% is TT with respect to
Y, then 72 will be TT with respect to y,. Further
it follows that the action of C on the welght < momen-
tum?22 7% = 31/373 jg the identity: C :7 % = Fa, Of
course, the multiplicative factor y1/3 does not affect
the TT property. Therefore,once 7% % has been con-
structed by any means whatsoever for a given metric
Ya, there is an infinite family of them generated by

C corresponding to the conformally transformed
metrics. This may be stated in another way. The
construction of TT tensors depends only on the con~
formal structure of the underlying space. The stated
invariance of 77 7 > with respect to C decouples the
momentum and Hamiltonian constraints, as we now
show.

For given v, and 77 %, the Hamiltonian constraint will
not in general be satisfied. However we can now use
a C transformation to insure that the Hamiltonian
constraint will hold in barred variables, while the TT
property is still maintained, as we showed above. By
using Eq. (9) and the well-known conformal trans-
formation of scalar curvature,

R = ¢74R — 8¢~5V2¢,
we find that ¢ must satisfy the Lichnerowicz? equa-
tion

V2¢ + L Mp~7 — 1R = 0. (10)

Here V2 = y2Y7,V, is the Laplacian associated with
the given metric 3, and

M=y""8y, yii1 ﬂ?? .
All the coefficients in this equation for ¢ are known,
inasmuch as 7, is specified arbitrarily and 77 T is
assumed to be given. This equation is elliptic and in
different but equivalent form was studied by Lichne-
rowicz.? It will not in itself be subject to further
inquiry here. The result we wish to stress at this
point is that %‘}Tb may be regarded as completely un-
constrained (independent of all four constraints) be-
cause it is insensitive to the solution ¢ of (10). Thus,
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we regard the Hamiltonian constraint as determlmng
the conformal factor of the metric, with 7, ; unaffect-
ed by this determination. The Hamiltonian constraint,
as well as the momentum constraints, can thus be
treated by mapping arbitrary functions onto solutions.
The physical naturalness of this interpretation is
discussed in the final section,

6. TRANSVERSE TRACELESS MOMENTA

The additional requirement that the momentum be
traceless is often regarded as a condition on the
choice of a timelike coordinate-that is, space~time
is sliced in such a way that the spacelike hypersur-
face with metric v, is embedded “maximally”. This
means that the volume of any finite portion of the 3-
space is unchanged by infinitesimal deformations in
the orthogonal (timelike) direction. To maintain the
criterion of tracelessness for a finite time cannot al-
ways be achieved as a time-coordinate condition on
all compact 3-manifolds, as pointed out by DeWitt,15
On the other hand, Deser23 and others,24 have shown
how to decompose symmetric tensors covariantly with
respect to a given metric in such a way that their TT
parts are obtained without the necessity of imposing
slicing conditions. The method of covariant decompo-
sition is probably the most natural and powerful tool
in the treatment of the momentum constraints; how-
ever, this particular matter must be deferred at pre-
sent, The objective of the present section is to show
that the traceless requirement can be incorporated
into the problem of finding the mapping © discussed
earlier.

We must now construct © subject to constraint 7 = 0,

or
=T = [det<a€c>} 2% 35 Fnm =0,
0x4/)0xm™ oxn
where the Jacobian of the mapping can be divided out
since we assume it does not vanish. We may con-
sider that 7 = 0 merely makes one of the six 7% de-
pendent so that five of them remain arbitrary. In
turn, this means that there will be only two essential
arbitrary functions of three variables in the solution
for ©, Solving (11)for 711, for example, and substitut-
ing into the basic equation (5), we see that no terms
of the type 9207/(3x3)2 are introduced. Therefore the
character of the equations is unaffected and the
Cauchy-Kowalewski theorem19 applies as before,
subject to the same requirements. Also as before,
it is helpful to think of this new coordinate mapping
© 1 as acting on the metric with the 7% remaining
untransformed. Hence, for a given 3-geometry and a
set of functions 7% (x) ,of which all but one are arb-
itrary, there exists a metric representation 7,,(¥) of
the given 3-geometry such that 5,72 = 0 and
v Tab = 0.

(11)

7. THE INITIAL VALUE EQUATIONS AND GAUGE-
LIKE TRANSFORMATIONS

Once one has constructed 74 by determlmng the
mapping @, or by any other method then 77 . is
immediately known. This object is C invariant and
is therefore independent of the Hamiltonian con-
straint. The latter determines ¢ and, hence, the C
transformation which is needed to complete the solu-
tion of the problem. Thus, the four unknowns deter-
mined by the four constraint equations in this approach
are three functions 64 which define a coordinate

J. Math. Phys., Vol. 13, No. 2, February 1972



130 JAMES W. YORK, JR.

transformation and one function ¢, which defines a
scaling transformation C.

We see that in this approach the full 3-geometry is
not arbitrarily specifiable in advance; only the con-
formally invariant part of 3-geometry has the status
of being completely unconstrained. That this result
is fundamental in the theory of gravitation has been
shown recently® to follow from conformally invariant
representations of three-dimensional geometry.
What we may call the three-dimensional conformal
curvature tensor25 is defined by?26

g = y1/3eerims R, 12)

where €42 is the completely antisymmetric unit
tensor with €123 = + 1 and R, , is the Ricci tensor.
This object has quite remarkable properties which
can be summarized in a theorem.

Theovem: For every spacelike 3-geometry,
there exists a tensor density % of weight 5/3 de-
fined by (12), which is (i) symmetric, (ii) trace-free,
(iii) conformally invariant, (iv) covariantly trans-
verse, and (v) vanishes if and only if the 3-space is
conformally flat,

That 34 is purely intrinsic to 3-geometry and is
conformally invariant, and therefore C-invariant,
show that it is unconstrained by the initial value
equations. Its further properties, notably that it is

identically transverse and traceless, show that it
gives the general “pure spin-two” representation of
3-geometry. These properties lead one to identi-

fy the three-dimensional conformal curvature tensor
B with gravitational radiation.27 Characterizing
gravitational radiation by means of 8¢ and 752 en-
ables the recognition that the C-transformations for
arbilrary ¢ are “gaugelike” in that they leave the
radiation field invariant. Unlike the case in electro-
dynamics, however, this gauge function is not arbi-
trary in terms of the complefe initial value problem,
which does not deal solely with purely transverse
fields, On the contrary, this factor is determined by
the Hamiltonian constraint, which thus may be thought
of as playing the role of a built-in “gauge” condition,

In conclusion, we see that general unconstrained ini-
tial data, i.e,, the gravitational degrees of freedom,
are represented by a pair of transverse, traceless
tensors A% and 77 2. Each of these objects provides
an irreducible representation of both the coordinate
group D, and the group of scale transformations de-
fined by C. It has been shown that elements of these
groups can be used in mapping from sets of arbitrary
functions to solutions of the initial value equations.
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Operator Treatment of the Gel'fand-Naimark Basis for SL(2, C)*
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An operator form is developed to treat the Gel'fand-Naimark z basis for the homogeneous Lorentz group. It
is shown that the operator Z with eigenvalues z is a definite operator-valued function of the generators of
SL(2,C). A unified formulation of the unitary representations of the Lorentz group is obtained in a Hilbert
space endowed with an affine metric operator G whose functional dependence on the generators is derived ex-
plicitly. The Dirac bra-ket formalism is extended by making a distinction between covariant and contravariant
state vectors. The matrix elements of G are shown to coincide with the intertwining operator of Gel'fand and
co-workers. The principal series, the supplementary series, and the two kinds of integer point representations
are unified by means of a single scalar product involving the metric operator.

1. INTRODUCTION

The unitary representations of the homogeneous
Lorentz group have been obtained and classified by
Bargmann! and Gel'fand and Naimark? who used dif-
ferent methods. The discussion of representations at
integer points is due to Gel'fand and Vilenkin and is
treated in the book on Generalized Functions of Gel'-
fand, Graev, and Vilenkin.3 For extensive reviews of
the representations of the Lorentz group, the reader
is referred to Ref. 3 and the books by Gel'fand, Min-
los, and Shapiro,4 Naimark,> and Riihl.6

Physicists who, until recently, were content to use the
finite dimensional nonunitary representations of
SL(2,C) in connection with covariant fields, are now
motivated to familiarize themselves with the general
representation theory in the light of several new
developments in particle physics. One is the har-
monic analysis of scattering amplitudes with respect
to SL{2,C) started by Toller.7 Another approach,
initiated by Nambu,8 is the use of infinite component
fields to represent an infinite family of particles sug-
gested by the Regge classification of hadrons. A
third reason is the formal similarity between
SL(2,C) and the internal invariance group for dual
amplitudes, as first noticed by Domokos ef «l.9 The
Gel'fand-Naimark basis is particularly useful for
the study of dual amplitudes in the Koba—Nielsen
form9-11 and the integer point representations of
SL(2,C) play an important role.

In view of such considerations, it might be useful to
develop a compact operator formulation, in accor-
dance with the quantum mechanical treatment of
groups of physical relevance to reformulate the
Gel'fand—Naimark theory of the representations of
SL(2,C) which was originally formulated with the
method of homogeneous functions.

Our method can be outlined as follows. We start with
the Lie algebra of the abstract operators that repre-
sent the infinitesimal generators of the Lorentz
group. We then construct two functions of the
generators which, together with the Casimir opera-
tors, form a maximal set of commuting operators.
The simultaneous eigenstates of this set define a
certain vector space. The z basis is labeled by the
Hermitian and anti-Hermitian parts of an operator
valued function
Z:Z(pr)s (1‘1)
which becomes a rational function of the generators
within an irreducible representation. Thus it belongs
to an operator space which constitutes a generaliza-
tion of the enveloping algebra of the elements J;, of
the Lie algebra. The eigenstates, labeled by the
eigenvalue z of Z, form basis vectors in this space.
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A general vector If) is regarded as a wave packet
with components f(z) in this vector space. Now the
operator Z has been chosen in such a way that

U (A)ZUA) = (@Z + b)/(cz + d),
where

(1.2)

a b

d> e SL(2,C). (1.3)
We also introduce an operator Z such that its eigen-
value z* transforms with the complex conjugate
SL(2,C) matrix A*. We show that

Z =GZTG"1 = Z1, (1.4)

hence the simultaneous eigenstates of Z and Z are
different from the simultaneous eigenstates of ZT and
Z7. Thus we are led to introduce two kinds of basis
vectors which we call covariant and contravariant.
They are related by the operator G which is also a
definite operator-valued function of the generators.
Then G plays the role of the metric in an infinite di-
mensional affine vector space. With its matrix ele-
ments which coincide with Gel'fand's intertwining
operator,3 we can transform the covariant compo-
nents [(z) of a vector into its contravariant compo-
nents f(z).

This is a new situation in physics. The metric in
Hilbert space is usually taken to be Euclidean. Al-
though spaces with indefinite metric have been con-
sidered in quantum field theory, the representation
theory of SL(2,C) yields naturally a Hilbert space
endowed with a metric G. We are then led to genera-
lize Dirac's bra and ket formalism in quantum
mechanics and distinguish covariant and contra-
variant bras and kets. Just as in ordinary affine
space, the scalar product of two vectors can be writ-
ten in terms of their covariant components and the
elements of the metric tensor. Hence the scalar pro-
duct of two vectors |f) and (g!| involves, besides their
covariant components f(z) and g(z'), also the matrix
elements of the metric operator G. The form of these
matrix elements depends on the particular class of
unitary representations considered. Thus, from the
general form of G associated with the representation
(j,,7,) which we show to be

G = I=#(I-#) T (1.5)
with

p=j; +i5+1 (1. 6)
and ‘

OD=dyg +d14 +ild 31 +J54), (1.7)

we derive the various forms of the scalar product
for the principal series, the supplementary series,
and the two kinds of integer point representations
from a single formula. Although partial unifications

J. Math. Phys., Vol. 13, No. 2, February 1972



132 I. BARS,
of the different scalar products without the benefit of
the operator formalism can be found in Refs.3-10,we
believe this is the first unified treatment of all the
unitary representations of SL(2,C).

The affine Hilbert spaces and the operator method
introduced in this paper may find applications in the
representation theory of other noncompact groups
relevant to physics such as the de Sitter groups or the
conformal group.

2. THE Z BASIS OF SL(2,()
The generators of the infinitesimal transformations

of SL(2,C) are dyy = — d,, with the commutation rela-
tions
Vowd ] = i6dy, +bd, — 8,9y, — 6,d0,),  (2.1)

where the greek indices run from 1 to 4.

Define the rotation operators J, and the boost opera-
tors K, through the equations
(2.2)

1
= 2€40mJpm »

Kn = z.J4n’

where the latin indices take the values 1,2,3. The
commutation relations take the familiar form

[Verdy ] = i€hped, s (2.3a)
(K, K =— i€, (2. 3b)
Ve, K] = i€y, K- (2. 3c)

We shall also use the self-dual and anti-self-dual
combinations

Mpu = %(pr +“I:w)’ Mw = %(Jpv— J:w) (2.4)
with _ .
qu = Ee;waBJaB (2.5)

and define the left- and right-handed vector opera-
tors

Xfp =My =3€,My  Xf=—Ny =326, Ny, (2.6)
In vector notation, we have
X,=3@ +iK), X,=:0— K 2.7
with commutators
[xt,XE] =0, (2.8a)
[(XE,XE] = i€, Xk, (2. 8p)
(X2 XR] = i€, XE. (2.8¢)

The two Casimir operators that commute with J“y
are -

F,=1d,d, =0T~ KK) = XX, +X,°X,,

e 2. 92)

Fy =14d,d, = i3 K=XX, —X;*X,. (2.9b)
Under a parity transformation

I:J—J, K-—K, (2.10a)
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we have

F,-»F,, F,——F,, (2.10Db)
so that F, is a Lorentz scalar and F o a Lorentz
pseudoscalar. Instead of these parity eigenstates we

shall often use the alternative Casimir operators

C, =3(F; +F,) =X,*X,,

Cy =3(F; — Fy) =XpX,,  (2.11)

which are transformed into each other under parity.

The irreducible representations are labeled by the
eigenvalues of C, and C, which define the numbers
(in general complex) Jy and j, through the equations
(2.12)

Ci=j,01+1), C,=j,y0, +1).

The bases usually employed are

(1) The covariant (m,,m,) basis defined by the
simultaneous eigenstates of the four commuting opera-
tors C,,C,, X%, and X, with m,; and m, being the
eigenvalues of the last two operators;

(2) The canonical (j,m) basis defined by the simul-
taneous eigenstates of the four commuting operators
Cl,Cz(or‘Fl,— iF,),J+J with eigenvalues j(;j + 1)
and J, with eigenvalues m.

We now introduce the Gel'fand—Naimark z basis as
the simultaneous eigenstates of C,,C,,and Z, where
Z =Z(C,,C,y,X%) is a certain non-Hermitian opera-
tor that is a rational function of J,. This operator
should satisfy the following conditions.

(i) In order to have four commuting operators
C,,C,, and the Hermitian and anti—Hermitian parts
of Z,we must have

[z +2z1,Z—21]=0
or (2.13)
[Zz,z1] =0.

(ii) Let z be the eigenvalue of Z. In order for z to
transform as

_az+b
Tcz +d

under an SL(2,C) transformation with elements

2' =

(2.14)

ad — bc =1,
(2.15)
we must have Z transforming as the ratio of two

operators ¥, and ¥, that, under SL(2,C), transform
like the components of a spinor.

We may define ¥; and.¥, as functions of J,, if ¥ with
components ¥, and ¥, satisfies the equation

A =eiloa)/2 = giloWw-in))/2 _ (ab> ,
cd

¥

@ X)¥ =Q¥F, ¥= ( 1) , (2.16)
vy

where 0, are the 2 X 2 Pauli matrices. In other
words, we define ¥ as one of the eigenspinors of the
2 X 2 matrix of generators and 2 as the eigenvalue
operator associated with ¥. The invariant 2 is a
function of C;[Eq. (2.19)]. Using

X, X X, =iX,, (2.17)
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which is equivalent to (18.1), we obtain
(@X,)2%¥ = XX, —0°X))¥,

or, with the help of the definition (2. 11),

C ¥ =0X,(0°X; + D¥ = Q(2 + 1)¥. (2.18)
Hence we find for 2 two operator solutions

Q=0,=—%+(C, +1)12 (2.192)
* Q=0 =—3%—(C, +9)V2, (2.19p)
which satisfy

2,+Q;=-—-1 (2. 20a)

and
— 0,9 =C; = 0,(Q; +1) = Q@) +1). (2.20)

In the following we shall call ¥ the spinor operator
associated with ;. Thus we have the homogeneous
operator-matrix equation

(Xg~ Q,  Xi—iXj <~1r1> o

, (2.21)
X +iXyE —XE—Q, ¥,

The compatibility of the two linear equations is as-
sured by the relations (2,11) and (2.20b). We now
define the operator Z by

Z=¥,¥,"1=(Q, - XP-1X}— iX})

_ (2.22)
= &} + XPI@, + XD

Now, consider a finite Lorentz transformation with
rotation parameters w and boost parameters v. Let

U=U(A) = eWrwriker — giarXytia*Xp (2.23a)
where
a=w—iv, o =w +iv. (2.23b)
We find
U—looxLU = e(iO/Z)oagoxLe("i/Z)ﬂ-a — AU'XLA—]',
(2.24)

where A is defined by (2.15). This relation can
easily be verified for infinitesimal @. Similarly, we
find

U‘IGQXRU = e(i/2)0~a*o.xge(~i/2)o.a* o AU.XR.&_l,
where

{2.25)
- a* —c*
A = 0yA%0, = (_ p* a*> . (2. 26)

The 2 X 2 matrix operator that transforms with A*
is then — ¢**X,, since we have

U-1{— ¢**X)U = U low *X,0 ,U = 0 ,A0*X A" 10,

- = A¥(— ¥ X jA*1 {2.273a)
wi -
A* = (c* d*). (2. 27b)
Let
— 0% Xpb = 0,8, (2. 28)

As before we have

Cop =Xp Xy =Q,(0, +1) =05(05 +1), (2.29)
where £, and Q5 are defined as the roots
L L
Qy=~—3 +(Cy +%)1/2, (2.30)
QY =—Qy—1=—3—(C, +3)1/2,

& satisfies the homogeneous equation

(~X§—Qz —X§~iX§> (¢1> 0
—XB+iX§  X§—9,/ \&,/

which is the right-handed analog of (2.21}). We now
define a non-Hermitian operator Z by

(2.31)

Z=®,831 = (— Q, — XHIXE +iX§)

- xa—xPU-—q, +xp. 3D

To find the transformation law for Z and Z, we must
first obtain the transformation law for ¥ and &. To
do so we apply U1 and U to both sides of Egs. (2.16)
and (2. 28):

U-1(A)o X, UB)U-L(A)RU(A) = Q,U-L(A)¥U(A),
U=1{A)o* <X UM UL (A)RU(A) = — Q,U{A)2U(A),
where we have commuted U(A) with 2, ,, since they
are functions of the Casimir operators.

Using Eqgs. (2. 24) and (2.27a), we can write

o°X, [A-1U-H AR UA)] = Q,[A1U-1(A)FU(A)],
o* X [A-T*UL(A)RU(A)] = — Q,[A-1*U-1(A)@U(A)].

Therefore, comparing to (2.16) and (2. 28), we must
have
A-LU-LQA)WU(A) = A, ¥,

ATTAU-L{A)RU(A) = A,
where A; and A, are c-numbers. Thus, we obtain

U-L(A)U(A) = \,A¥,

U-1(A)@U(A) = A,A*3, (2.33)

From the expressions (2.15) and (2. 27b) for A and
A*, respectively, and the definitions (2, 22) and (2. 32),
it follows that Z and Z obey the transformation laws

T(A)Z = U-1ZU = (aZ + b)/(cZ + d), (2. 34a)
T(A)Z = U1ZU = (a*Z + b*)/(c*Z + d*). (2.34b)
Furthermore, the commutation relations (2. 8a) imply
[z,Z]=0o. (2.35)

We note that Z and Z are not independent if we use
the parity operators I of Eq. (2.10a) such that

ISXL gl = XR, Isﬂllgl = 92. (2.36)
From (2.22) and (2. 32) we find the relation
—(2)1 = 12131, (2.37)
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The 2z basis is now defined by the simultaneous eigen-
states of C,,C,,Z,and Z. Let z represent the eigen-
value of Z on these states. Then the state |z) will
transform to

lz) = Ulz) = M), 2)| (az + b)/(cz + d)), (2.38)
where A(A, 2) is a certain multiplier to be deter-
mined later. In order for the eigenvalue ¢ of Z to
transform as

£ = (a*C + b%)/(c*C +d*),

we must have { = 2*, Thus, we define the states
ljlyj2;272*> by

Q1i1.d232,2*) =j1111,0252,2%), (2. 39a)
Q1j1,72:12,2%) =jyli1,igi2,2%), (2. 390)
Zlj .dgi2,2%) = 2ljq,dp52,2%), (2. 39¢)
Zljy,igi2,2%) = 2*1jy,5552,2%), (2. 394)

Within a given representation (j,,j,) using the com-
mutation relations, we obtain the expressions
Z=(j,—XP 1xf—iXp
= Xi-ixH(, +1 - X571
= X} +XP 1, +XP

= (j; +1 +XH&XF +iXHL, (2.402)
Z=(—jy — XPTIAF +iXE

= (XB+ XB(j,—1—XB1

= WF—iXP1(—j, +XH

= (—jy— 1+ XBXE— iXB)~1, (2. 40Db)

3. UNITARY REPRESENTATIONS

In this paper we shall be concerned with unitary
representations so that U(A) of Eq. (2.23a) is unitary.
Thus J and K are Hermitian

J=J1, K=KT
and

(3.1)

X))t =X, (€)T=C,. (3.2)
Thus, for the eigenvalues of C; and C, we have the

relation

710T +1) = a0z + 1) (3.3a)
” Jo=—1%% (i +2). (3.3b)
We define X as

X, =X, X=X (3.4)
and introduce j,, # by

2, +1=j,+tk, 2, +1=—j, +k, (3.5)

so that the Casimir operators F; and F, of Eqgs. (2.9)
have the eigenvalues
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Fi=3@J—KK) =35(j3 +k2— 1), (3.62)

Fo=dK=(j; +jo +1)(J; —J2) =Jok. (3.6b)
Since F, and — iF, are Hermitian for unitary repre-
sentations and, as we shall see below,j, is a real
integer or half-integer, we have the well-known two
cases for k = p + io:

(1) The principal series for which
p=jy+jE+1=jT+j, +1=0, k= k%
(3.7)

(2) The supplementary series and integer points for
which

jo tioc=j, —j5 =0, k=Fk* (3. 8a)
Equation (3. 8a) together with j, = real imply

Jy =it =7y =73 (3. 8b)
These two cases come from

p(jo +i0) = 0,
which is equivalent to (3. 3a).
From the expressions (2.40) we obtain

Z=(j, —X ) IX_ = (j, +1 +X,)X71, (3.9)

Z= (g —XPTHX)T = (), — 1+ XD,
(3.10)

where
Xi :Xl + sz,

()T = X] ¥ ix]. (3.11)

We shall now derive a relation between Z and ZT. We
have, from Eq. (2. 40a),

ZT= (1 +1-XDTIX)T = (G +X)EFYT
(3.12)
Z1 satisfies the relation

[z,zT] =0, (3.13)

which allows its Hermitian and anti-Hermitian parts
to be diagonalized simultaneously. We note the im-
portant commutation relation

[z,0]=1, NO=X, (3.14a)

[zt,01] = — 1. (3.14b)

The easily proved lemma,

[(0)1,21] = [(X] — iX})n, Z1] = n(X] — iX])m" 2,
(3.15)

leads to
SANZT = ZTA(IT) + f1(1TY), (3.16)

where f’ is the derivative of the function f with re-
spect to its argument. Taking
F@Y) = @1)yP = X] — X1, (3.17)

where p is defined by (3.7), we obtain from (3. 16)
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the relation

Z = (N zT(t)e, (3.18)
On the other hand, by virtue of

X, x5 ]1=0, (3.19)
we also have

[Ir,Z1] = 0, (3.20)
so that we can write

Z=GZ161=ZT— pXI—iX])"1, (3.21)
where

G=GT = @N)PlP = (LITH)?

= X] — X)X, +iXy)P. (3.22)

From (3.21) it follows that Z satisfies the commuta-
tion relation

[Z,nt]=—1. (3.23)
Finally we note the relations

Zt = G12G = Z — p(X, +iX,)71, (3.24)

[zi, 1] =1, (3.25)

[zt,zt]=0,[m,1t] =0, (3.26)

which show_that both Z and ZT are canonical conjugate
to I1, while Z and Z7 are canonical conjugate to 17,

The operator G collapses to the unit operator in the
case of the principal series for which we get

Z=2Z2" when p=0. (3.27)
As we shall see later, in general, & plays the role
of a metric operator in Hilbert space.

The generators X and X7 can now be expressed by
means of I1,1IT and their canonical conjugates. The
result is

X, +iX, =11, (3. 282)
Xg=—j, +1Z, (3. 28b)
X, —iX, = 2,Z — 122, (3. 28c¢)

The first equation is the definition of II, while the
second follows from

Z =&, +iX,)"1(j; +X3), (3.29)
which is one of the forms of Z in (2. 40a). Equation

(3. 28c) follows from (3. 9) after replacing X, by its
value given by Eq. (3, 28b).

Similarly, from the expressions of Z we find

X 1.X2T =17, (3.30a)

T —
1
X3 =j, +11Z, (3. 30b)

X1 +iX] =—2j,Z —11Z2, (3. 30c)

The generators X and X' can also be expressed by
means of ZT and ZT. Equation (3. 21) yields

Z=2Z%—pnt-1 (3.31a)
and _

Z =271 +pl-1, (3.31b)
while from Eq. (3. 25) we get

HzZtm-1=2zt—1-1, (3.32)
Using these results and (3. 3a), we find

X, =j%+1+02Z7, (3.33a)

X, —iX, =—2(j% + )ZT — 1I(z")2, (3. 33b)

XI=—(@Gy+1+17z7, (3.34a)

XT +iX] =20 +1)zT —1izt2, (3. 34b)

Using the commutation relations (3.14),(3.23), and
(3.24) we can now derive the Lie algebra (2. 8) and
the relations (2.12) from either set (3. 28), (3. 30) or
(3.33), (3. 34) together with (3. 28a) and (3. 30a). Thus
we have obtained a unitary representation of the
Lorentz group in terms of {II, Z) and (IIT,Z) or
(,Z7) and (IIT, Z 7).

Note that from (3. 28b) and (3. 30b) we have

Jy=X5 + X} =—(j; —jp) +NIZ +I1Z. (3.35)
Introduce the operators
A=QN2)z +0t), A =@q/N2)Z +1),
(3.36a)
B=(1/V2)Z—n), B=/N2)z—nm,
(3. 36Db)
which obey the commutation relations
{A,E]:O, [A)EJIO’ [ZyB]:()’ [_,1_3]=0,
(3.37a)
[A,A]l=1, |[B,B]=1, (3.37b)

typical of harmonic oscillator creation and annihi-
lation operators. We can then recast (3.35) in the
form

Jy =—(j; —j,) +AA — BB. (3.38)
Since AA and BB must have integer values and J,
has integer or half-integer eigenvalues , it follows
that j, =j; —7j, is real and allowed to take integer
or half-integer values.

4. DEFINITION AND TRANSFORMATION PROPER-
TIES OF COVARIANT AND CONTRAVARIANT
KET VECTORS

The states |j1,j2;z,z*>_which are common eigen-
states of C,, C,, Z,and Z will be called covariant
kets and will be denoted by the more concise notation

)

where we can omit (j;,j,) if we always work within

li15dgi2,2%) = (4.1)
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an irreducible representation of SL(2,C). This nota-
tion is in analogy to the vector notation in a finite
dimensional complex space where the basis vectors
are chosen to be ¢,,with the correspondence

)

In the finite case,n is discrete and varies from 1 to
N, while in our case the label z varies continuously
in the complex plane. We have

4.2)

2, z) {1+, + 42 z) =i z>, (4. 3a)
2, z) — L+, + Y2 Z) =7, z>, (4.3b)
Zz>:z z>' Z_z>=z* z>' (4. 3¢)

We now introduce the contravariant basis ket vectors
as common eigenstates of C;,C,,Z7,and Z1 and
denote them by an upper z label:
z
),

)=l ) -
Vo) zrff) =e ).

Because of the relations (3.21) and (3. 24), Eq. (4. 3c)
can be rewritten as

> =2zG-1
F4

This shows that with a suitable normalization we can

write
¥4 F4
=) of)-])
¥4 z

In case the basis vectors ¢, are not orthogonal, we
must distinguish between the contravariant basis
vectors e” and the covariant basis vectors ¢, in the
finite dimensional case. They are related by

QF

! (4. 4a)

Vai

(4. 4b)

Z1G™1
V4

,  2tG-1
2

> = z*G-1

z>(;1. 5)

(4.6) -

em = e, gnm, 4.7
with

g.m lgln = 6;{1

€"8nn = &
(4.8)

in complete analogy with (4.6) if g,, is a Hermitian
metric tensor in N-dimensional complex space.

Let us now apply the unitary operator

U(A) = eW-w+ikev — giasX+iaxXt (4.9)

on the covariant or contravariant ket vectors. [The

complex parameters a are given by (2.23b)]. The

infinitesimal transformation has the form
UA) = 1 + iaeX + ia*XT (4.10)

with X and X1 given by (3.28), (3. 30) or (3. 33),and
(3.34). From the commutation relations (3.14), (3.23),
and (3.25) and from the properties of kets as spelled
out by (4.3) and (4.4), we find
) l.)
z 2

>=zn >=zn
V4 V4 F4

=ZH — zII ,
4 z
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where we have commuted the C-number z with the
operator II. Since II is the canonical conjugate of Z,
it acts on the states as

)=o)

just as the momentum in quantum mechanics.

il (4.12)

Indeed, since 3/9z is a C-number, it commutes with
the operator Z and we can write

_z9 _0 -0 (
z1 z>_Zaz z>—azZ z>_azgz z>§
= +Zi (4.13)
z CERP :
so that (4.11) is satisfied. In the same way
[Z’HT] > = >
z z
gives
5
t =—-2
n z) . z). 4.14)
Finally, from
z z z z
[ZT,H] > = >y [ZT7HT]' > = )’ (4'15)
we obtain
z F A Z 3 |z
_ 9 + ___°_
1) 29, wl)-—]9). wwo

Therefore the rule is to replace Il by 3/8z and IIT by
— 9/92* on any ket vector, while (Z, Z) give {z,2*) on
a covariant ket and (Z1, Z1) give (z,2*) on a contra-
variant ket.

Applying the rules, we can replace X and X' by dif-
ferential operators when they are applied on kets.
The resulting expressions are found to be

X, +iX,) z) =£ z), (4.17a)
X, z> :<—j1 +za—az-> z), (4. 17b)
X, — iX,) z) = (2]'12—22 5%) z), (4.17¢)
!t — ix}) z> :—aZ—* z> , (4.17d)
X] z) _ <j2—z* az_*) z), (4.17e)
(X1 + ix)) z) = (— 9j,2* + 2*2 a‘Z?) z>,

. (4.171)
X, +iX,) z) =2 z), (4.182)
X3'z> =<j§+1+z%> z>, (4. 18b)
oo mof9) < s e8] )

(4.18c)
@] — ixp) z) -—:% z), (4. 18d)
X3 z) - <—j’{—1——z* ag—*> z), (4.18¢)
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d

3 Z .
(X{ + 7.Xg) ) = }2(]’{ + l)Z* + z*2 ﬁ;g

)
(4.18f)
From the formulas we derive the transformation law

of kets for infinitesimal Lorentz transformations in
the form
z’,z’*> ’

(4.19)

(1 + ia*X + ie*XT) ‘ *> = e, z,2%)
2,2z
where
Ma,z,2%) =1 +iogj; + (ay — i01)j 2 — %),
+ (af +iat)jzz*, (4.20)

2" =z —iagz — 3o, +ia,) —z(a, —ie,)22, (4.21)

2'* = z* + jafe* — z(af —iaf) — (@ + ia¥)z*,
(4.22)

Because @ and a* are infinitesimal, we can rewrite
these expressions as

Ma, z,z*) = (cz + d)2h(c*z* + d*)2iz, (4.23)
, az +b _ « _ a¥z* + b*
&' =Ahz =y, AT =AM =

with (4.24)

1— 3ia
—%ial +%a2

Hence, the infinitesimal transformation (4.19) can be
integrated to give

— 3io, -%Otz) (4.25)

1 + zia,

U(A)

Az) . (4.26)

where U(A) is given by (4.9) and Az by

) = (cz + d)2ir(c*z* + d*)2i:
V-4

_az +b
T ez +d

Az
(4.27)

Thus we have derived an analog of the Gel'fand—
Naimark transformation law on covariant basis ket
vectors. The transformation law has the form anti-
cipated in Eq. (2. 38) with the multiplier

AA,2) = (cz + d)2ir(c*z* + d*)2iz, (4.28)

In a similar way, using the set (4.18) we find

Az)
(4.29)

We note that going from covariant to contravariant

kets only results in a change for the multiplier in the

transformation law. The necessary substitution

U(n)

z
> = (cz +d)2i32(c*z* + d*)- 252

et R T P (4.30)
is consistent with the unitary relation (3. 3a). There-
fore the metric operator G which relates the two
transformation laws can also be interpreted as an

“intertwining operator” in Gel'fand's language.3

5. THE BASIS BRA VECTORS AND SCALAR PRO-
DUCTS OF GENERAL VECTORS

In the finite complex space, the contravariant basis
vectors ¢” are said to be orthogonal to the covariant

b
with (a ) — grilGra)/2 _ g-ilo-(w-iv))/2,
c d

basis vectors e, if we have
(em,e,) = (em)*+e, = om (5.1)

because of the Hermitian form of the scalar product.
Using the metric tensor and (4.7) we can write

(em 9en) = (elglm)*.en =g;;,, 671,, :g:m'

Because of the hermiticity of the metric tensor

& = Eun> (5.2)
we find

e,.e,) =&, (5.3)
Similarly

(em’en) — (em)*.elgln = gmn (5_ 4)
and

(e,,,e”) = (e*g, ) *egin = bF gt oin (5.5)

=g 8" = g,,8" =07,

where we have used (5.2) and (4. 8).

In a generalized Dirac notation, we can write

Joe= ) e =] e

Denoting scalar products by the notation

€, =

€n = (n m>, (5.7)
we find

SRRAVEE
and

(m n) = s (m n> = gmn, (5.9

Following Dirac, we also represent dyadics by kets
followed by bras, so that, for example,

o

If we only apply the dyadic ¢ ,e*™ on ¢,, we have

* _
enem_

(5.10)

e, e*"e, =e¢ (e*"e) =¢,, (5.11)

so that the dyadic ¢, e*™ is equivalent to the unit
matrix. In modified Dirac notation, we write

T2

I denoting the identity operation. This is the com-
pleteness relation.

=1, (5.12)

m

In the same spirit we introduce contravariant bra
basis vectors in the vector space in which U(A)
operates, through the orthogonality relation

:

(5.13)

z’> =0@(z —2).
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It
z=x+1,

zl — x/ + iy!,

the Dirac delta function in (5.13) is defined by
0@z —2) =6 —x)86(y — ). (5.14)

The relation (5.13) is consistent with the contra-

variant bra vectors being simultaneous eigenstates

of Z and Z with respective eigenvalues z and z*.

Indeed we have

(lel.) = (
but also
z’) B ;<Z

(z
)

so that we find
z
e
Hence the scalar product (5.13) must vanish for
z # z'’,and a delta function normalization is possible.

Zz

Z

(5.15)

The generalization of the completeness relation reads

.

The covariant bra vectors are now defined by

fd2z =L (5.16)

V4
< :< G (5.17)
z
and they are simultaneous eigenstates of Z7 and Z7:
( ZT:( z, ( ZT=< z*, (5.18)
z z z z
with the properties
2z’ z
< >:6(2)(z—z’), [ a2z >< ' =1
o z (5.19)
In analogy to (5.9) we also have
r4
< ) =< ’c > - G, z2"), (5. 20)
zlz) F

where the function G{z,z’) represents the covariant
components of the metric operator, which will be
given explicitly in Sec.7. Its contravariant compo-
nents are represented by the function

Ge,e0 - 1| ),

-

corresponding to the matrix elements of the inverse
metric tensor.

(5.21)

A general ket is represented by the vector

) (5. 22)

n
)Zv*n
n

J. Math. Phys., Vol. 13, No. 2, February 1972

lg) = [ dng*(C)‘ > [ a2z (c)

in analogy with

n
lv) =vter =v*¥e, = v}

>, (5.23)
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in the N-dimensional complex space. Then we may
regard the functions g*(z) and §*(z) as, respectively,
the covariant and contravariant “components” of the
vector |g).

A general bra will have the expansion

2 ~
g|=fd%< f@):fd%( f(z), (5.24)
2
corresponding to the finite form
wl = luyr :e*"unze;‘;u". (5.25)

We can also write, inserting a complete set of states
through Eq. (5. 16) and using (5.21),

(fl= [[a2zaz <z ]c> <§ /@)
= [[a2zazt <C‘f(2)5(2, 9

so that the contravariant components of | f) are re-
lated to its covariant components by the relation

7©) = [a22G e, 0)f(2),

(5.26)

(5.27)

through the inverse metric tensor.

We define the product (f lg) which will be shown to be
a Hermitian scalar product in Sec. 6:

= [d2zf(2)g*(2),

(5.28)
where we have used (5.19). In terms of covariant
components only, we have

(flg) = [[azaaz <z Fe)g*@) l C)

(f lg) = [[d22d%G (2, O)fR)g* () (5. 29)
corresponding to the finite expression
wlv) =gmu, vk (5.30)

Working only with the components of vectors has the
meaning of the realization of the group transforma-
tions in a Hilbert space of functions. The norm of
lf) is defined by

Ifh2 =(1f) =

It is positive definite because the inverse metric
operator G~1 has the form

[fa2za2¢Gz, 0)rz)* €). (5.31)

G-1 =1 (HP)T = (HHT)P, (5. 32)
so that it is both Hermitian and positive definite.
Thus we have a genuine Hilbert space, provided the
function space is chosen so that the integrals that
define the scalar products are convergent. Then the
normed vectors |2}, unlike the basis vectors TJ ,

span the Hilbert space.

6. TRANSFORMATION PROPERTIES OF THE BRA
VECTORS AND THE INVARIANCE OF THE
SCALAR PRODUCT

To derive the transformation law for the bra basis
vectors we first calculate the matrix elements of
U(A). From the transformation law (4. 26) and the
orthogonality relation (5.13), we find
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(Z U(A) > = (cz +d)2i(c*z* +d*)2i,6@ (2’ — Az),
z (6.1)
while (4.29) gives
[ *
< , U(A){ > = (cz +d)2is°2
% % (c*z* + d*)2iF26@ (' — Az).  (6.2)

Now, using the completeness relation, we can write

¢ wwl,) (

(cz + d)2i;

UA) = [d 2z <Z/

= fa’zz <Z

x (c*z2* + d*)2i20 @ (z — Az).

Let

£ = Az = (uz + b)/(cz +4d). (6.3)
Then,

d?¢ = (cz +d) 2(c*z* +d*)"2d2z, (6.4)
so that,
o . A_lc .
< ‘ U(a) = jd2c< (cz +d)23,2

X (c*z* +d*)2i726@(z" — &) (6.5)

Equation (6.3) implies
cz +d=(—c{ +a) 1.

Inserting in (6.5), we find
U(A)

(
<A‘1Z !

Another form is
z/
( ) (A1)
(ce’ +d)2i,2(c*z'* + d*)2iye,

2
< _ <Az’
(6.7)

This last formula is consistent with (4. 26) since we
have

(_ cz' + a)_2/1_2(* (.*Zr* + a*)—2j2—2_

(6.6)

Il

Ut(a)

2’ Az’
< ‘UTU > =(cz’' +d)~2(c*z'* +d*)‘2< > .
F4 Az
(6.8)
Now
Az’
< =8@) (Az’ — A2)
Az ) .
= (cz’ +d)2(c*z'* +d*)26@(z' —z), (6.9)
s0 that
<‘ ‘UTU > = 6@ (e —2) = (‘ ! > (6. 10)
Z K4
which is the unitarity condition for U.
In the same way we find
(oo = (o
P4 2
B < | (ez? + d)233 (c*z'* + d*)2i,
Az (6.11)

for the transformation law of covariant basis bra vec-
tors.

By applying the commutation relations (3. 14), (3. 23),
and (3. 25) on bra vectors, proceeding exactly as in
Sec. 4, we find the effect of Il and IIT on these states
in the form

<z n:—% <‘] <2 nT:%;(Z', (6.12)
(et (el e

Note the change of sign from Egs. (4.12), (4.14), and
(4.16). The rule is to replace Il by —3/dz and I by
9/3z* when applied on bra vectors. A differential
form for X and X' can be found from the operator
expressions (3.28), (3. 30), (3.33), and (3. 34) when
these generators act on bra vectors. Integrating the
infinitesimal transformation law we recover (6. 6)
and (6.11). The transformation law for the covariant
vector components f(z) and £*() can now be derived
from the invariance of the scalar product. We must
have

(rlg) = (loutly) = (71g), (6.14)
where we define the transformed vector as
(fl= (o) = a2z ( l (T(0)7(2))
= fazz <Z ’ Ufz). (6. 15)
Using (6.6) we find
('l = | a2 <A—lzl ez’ +a)2n?
X (— c*z2'* + u*)2572((z7).  (6.16)

As in (6. 3) and (6. 4), making the change of variable,

2’ =Az, d2%z =(—cz' +a)y"2(—c*z'* + a*)"2d2z’,
—c¢z' +a=(cz +d)1,
we find
2
('l = fdzz < (cz +d)2i(c*e* + d*)27x1(Az). (6.17)

Comparing with (6.15) we obtain

)

= T(A)(z) = (cz + d)201(c*z* + d*)212f(Az),
: (6.18)

as the transformation law for the covariant compo-
nents of a vector.

(F1ua)

Thus we recover the Gel'fand—Naimark law without
using the method of homogeneous functions.

The components f(z) are projected out of the vector
(1 by means of the formula

@) = (7 ,2) = fazz’ <z( e,

Then, the functions

(6.19)

Flayzg) = eghes?a(r | ) :z%hzgzisz—:)
1/ <2
(6.20)
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are homogeneous of degree 2j; in (z,,2,) and 2j, in
(2%,2%). The transformation law is then linear for
2, and z, so that

= <21> - AY,
22

transforms like a spinor. This establishes the con-
nection with the representation theory on spaces of
homogeneous functions.

(6.21)

7. THE Il REPRESENTATION AND CALCULATION
OF G(z,z'). UNIFIED SCALAR PRODUCT FOR
VARIOUS CLASSES OF REPRESENTATIONS.

In the Il representation,?2 I and I1* are taken as
diagonal, so that we consider simultaneous eigen-
states of the commuting set C,, C,,Il,and 1", Let
us write

Qli1sdesp) =i1lis,dgsp), (1.1a)
Qli1,d0i0) =g liyiaip), (7. 1b)

Mlji,00:0) == %ipljy,da;b), (7.1c)
Itj1,5050) = 3% iy, d0; D). (7.1d)

There is no essential distinction between covariant
and contravariant states in p space except for a p-
dependent normalization factor. Hence, dropping the
J1,Jo labels, the bra vectors can be introduced by

(Pl =—ziplpl, (pINT=3ipXpl. (7.2)
Since

(pInlp =—3ipplp") =—zip"plp7),
we require the normalization

(plp") =@ (p —p"). (1.3)

Because Il and Z are conjugate,the p and z eigen-
states must be Fourier transforms of each other.
Indeed, writing

> =§1;fd2pe-iﬂe(ﬂ) Ip) (7.4a)
4

and

2’ 1 .
< ‘ =5 [d2preietrz)(p], (7. 4b)

we have
1 [dzpeitelse2] = 6@z’ — 2),

<z’ ) - 4_1.2_ fdep'dZPei[Re(p/z')—Re(pz)]5(2) (p —p")
z T
= 4n2

which shows that the normalizations in z and p spaces
are consistent.

(7.5)

We have

z> -2 Z) =2_1nfd2p %{yi(pﬁp*z*)@}lp)

¢
1 ¥4
= o= [d2peietn(— 1ip) |p)

‘d2pe-ike (01 |p), (7.6)

= 2r
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Hence, from (7. 4a) we have derived (7.1c). We are
therefore led to the relations

¢ lp) =  3ip)elp),  (@P)TIp) = Gp*¥)elp), (1.7)

which allow us to calculate the matrix elements of
the inverse metric tensor. We have
)

2’ 2
Cle]) =
(2ﬂ)'2fd2pd2p'eiRe(zp-zipi)

X (— zip)? (zip*)P6@(p’ — p)
- (2-”)-2depeiRe[(z—z')P](%)Zpb|2p_

’

I

G(z',2) G-1 ne(me)t

Using the Fourier transform of |p|2¢ as given in
Gel'fand ef al.,13 we find

<Z' >:r(1 +p)lz__z,l_zp_2’
¥4

p=p*=j
which is the general form of the “intertwining opera-
tor” to within a factor.3

G-1

+j5+1, (7.8)

This expression now allows us to discuss the dif-
ferent explicit forms of the scalar product defined
in Eq. (5.29):

(1) The principal sevies: As we have seen before,
in this case we have p = 0,so0 that G = 1 and we get

- 2z’ 44
limG(z,z') = lim ( 'G"l > = < >
p=0 p—0 z z

ra+
=6@(z' —2) =1lim Hh —z'|-2p-2,
=0 P (1.9
so that the scalar product takes the form
(flg) = [d2zf(z)g*(2). (1.10)

Thus the functions f(z) must be L@) functions. For
the principal series, the distinction between covariant
and contravariant states disappears as we have Z =
VAR

(2) The supplementary sevies: In this case p =0
and
(flg) = %g(——-—'-p%) fdzzdzz’ lz — 27 |-20-2f(2)g*(2").
(7.11)
Apart from the over-all normalization factor, this
is the familiar form for the supplementary series

scalar product.® In the same Hilbert space as in the
preceding case, the integral exists for

oflpl{1. (7.12)

(3) The integer puint case with p =n: n being a
positive integer or zero.

In this case we have the representation

L n—1 n—1
(]1,]2) = < 2 2 >' (7-13)
The inverse metric operator takes the form
G~1 = ()~ (7.14)
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so that, from (4.12) and (4. 14), we have

22
T ___0%
HH z> - azaz* z> ’
[ )= = (1) _o%
( z) 0z2ndz*" |,
leading to
’ azn r
G,z)=(1)" W{)@)(z —z’)
= (— L)nglnal (z — 27). (7.15)
ra+p
—im —— ", 5| -2p-2
_Plf% T 1) lz — 2'|-20-2,
The scalar product takes the form
(flg) = ( 1) [d2zflnm)(z)g*(z2), (7.16)
where
32n
f[n.m](z) :Wf(z). (7. 17)

This representation is formally the same as finite
nonunitary representations. In fact,the polynomials
P, (z,z*) which correspond to the latter are annihi-
lated by the metric operator, so that

E"™ (z,2%) = 0, (7.18)
and therefore form a subspace of zero norm. Hence,
as discussed by Gel'fand ef al.3 the functional space
must be restricted to functions such that

fimnie) # 0

(4) The inleger point case with p =—n. n being
a positive integer.

In this case the representation is

L n+1 n+1
(G1,d2) = <~ I ) (7.19)
To find G(z,z'), we write p = —n + € and let € — 0:
N qim A=+ €) o i2m-2-2
Glz,2’) = lim, T — ¢) |z — z7|2n-2-2¢ (7.20)

1 {(— 1)n-1lzg — z|2n-2

- e% ne[r’(n)]Z
2(— 1) | 2me L,
Wh—z |22-2 Joglz — z \+0(€)}.

To eliminate the first term which blows up like 1/¢,
we must restrict ourselves to the subset of functions
which satisfy

[zhz*if(z)d2z = 0 (1.21)

for k,1 < n — 1. Hence, the scalar product reads

(/,8) ={2(= )/7[T () 12}/ [ d22a2z' |z — 27| 2n-2
x loglz — 2’ |f(z)g* ().

Thus, we have shown that the form (5.29) with the
expression (7. 8) for the matrix elements of the in-
verse metric operator encompasses and unifies all
cases in which a unitary representation of SL(2,C)
exists.

(7.22)

8. REMARKS ON THE INTEGER POINT CASE WITH
p=n

In this section we shall study further the case

(j1,j2) = G — 1),3(n — 1)), where n is a positive
integer and show its intimate connection with the
same nonunitary (j,,j,) representation. For the
corresponding nonunitary representation, the function
P, (z) is a polynomial of order » — 1 in z and order
n — 1 in z* so that its norm given by the formula

1P ()12 = (— 1)» [d22P[n»1 (2)P}(2), (8.1)

which follows from (7.16) becomes zero.

As explained by Gel'fand et al.,3 in order to avoid a
degenerate scalar product, we must restrict our-
selves to a subspace of functions f(z) such that for
p = n their derivatives of order n,f[*:7)(z) do not
vanish. Then all the polynomials
n-1
P, (2) =“Z=}n a2k z*!
should be excluded from our space. Note that for
p = n,the set of such polynomials (E,) forms an in-
variant subspace under Lorentz transformations,
connected with the nonunitary representations men-
tioned above. The subspace of functions which form
an infinite dimensional unitary representation for
p=n=1,2,...is the set of functions obtained from
homogeneous functions through (6. 20) and defined
up to a polynomial in E,. Following Gel'fand ef al.3
we denote this set by F,. Thus if f(z) € F, and
P, (z) € E,, then

n
{f@) + Pn(z)} €F,.
Let us denote the part of f(z) which contributes to

the scalar product (7.16) by f@(z). Then we can
write

(8.2)

FOE) = 35 ay ke 8.3)
a_nd k,l=n
fle) = f9(z) + P, (), (8.4)

where P, (2) is any polynomial in E,. From the way
it is defined, the only part of f(z) which is “relevant”
to unitary representations is obviously f®(z). Under
a Lorentz transformation, as shown in (6.18), when

cz +d (8.5)

T(Af(2) = lcz +d|2e-2f <"z + b),
P, (z) goes into another polynomial, but f ¥)(z) does
not transform into a function of the form (8. 3).
Therefore, to extract the relevant part of T(A)f(2), we
must subtract a polynomial. In other words, the set
of functions of the form f®)(z) as in (8. 3) is not an
invariant set,and an additional “gauge transforma-
tion” (subtracting a polynomial) is needed to make
itinvariant. This is analogous to theuse of the trans-
verse electromagnetic potential A,{ , which is the
only dynamical variable but is only covariant with an
additional gauge transformation. Thus, in the case
of the integer point representations, it is possible to
choose a gauge just as we do in electrodynamics. If
the gauge is fixed in such a way that we extract only
F@)(z) out of f(2), then, as described above, we shall
need an additional gauge transformation to obtain
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a covariant f(z). Instead, we choose the “gauge” as
follows.

Each term in Eq. (8.2) is a linearly independent poly-
nomial which is annihilated by the metric ¢G~1 at in-
teger points p = 1,2,...:

an (z')olr.nl(z — z2')d2z" = PI*.7)(z) = 0. (8.6)
Thus, for 2j; + 1 =2j, + 1 =p =n,there are

n? =(2j; +1)(2j, +1)
linearly independent polynomials which satisfy Eq.

(8.86). Using these polynomials, we can choose the
gauge so that we can write f(z) € F, as

n-1
f@) = 2 2ka¥g,(z), (8.7
E.1=0
where each ¢,, can be written in the form
0
6,,2) = 2o (brY,zmexn, (8.8)
mn=0

The advantage of this new form is that under a
Lorentz transformation the structure (8.7) remains
invariant, so that (8.7}, unlike (8.4) is a covariant
form, that is, the functions ¢,, transform into each
other and acquire no extra factors of (cz + d) and
(c*z* + d*).

To give a definite example, let us consider the case
j1 =Jjo = 3,0r p = 2 representation. This is the
representation used in RRef.11. We can write

/(z) :(f p = 2:Z>
v 22*¢ 1) + 2%0 1 0(2) + 204, (2) + dgol2), (8.9)
/@) = @* 1) <Z;1Z; Z;zg)(i) (8. 10)
Applying a Lorentz transformation we get
T(A)f(z) = (cz +d){c*z* +d¥)/(z') (8.11)
with
e tD, (8.12)

Using Eq. (8.10) we can rewrite Eq. (8.11) as

$11R)  $10(") z
A . (8.13
¢01(Z') ¢00(Z/)> <1> ( )
az +b

This is because we have
z a b Z m
A = = (CZ + d).
1 c d 1 1

T(A)f(z) = (2* 1>A'f<

F. GURSEY

Therefore, to describe the (z,3) representation, we
could just as well use the functions ¢,,(z) by speci-
fying their Lorentz transformation property as

T(A)¢i]‘(z) = (AT)ik ¢kl(z ')(A)”. (8.14)
Notice that we can write
¢11(Z) ¢10(3)
= +0° , 8.15
(oo eonsy) =#0te) + a0 (8.19)

where o, are the usual 2 X 2 Pauli matrices. Then,
from Eq. (8.14) we obtain the transformation proper-
ties of

9, = (60, (3,9 (8.16)
in the form
T(A)g, @) = ALe, (?j iZ) , (8.17)

where AV is the 4 X 4 nonunitary representation of
the Lorentz transformation. Thus, the functions

<1>“ (z2) describe the unitary integer point representa-
tion (4, ) and transform like the direct product of
two representations,namely the finite dimensional
(5, 5) representation, and the infinite dimensional
unitary representation j; =j, = 0,0r p = 1.

We can regard the functions ¢, (z) as limiting func-
tions of the supplementary series as p tends to one
and write
[2H k) .
<

¢, ) = fl)i_x'ri< M

For the representation (3(2 — 1), 3(r — 1)), we write
f(z) in the form of a polynomial of order » — 1 in 2
and n — 1 in 2* with coefficients that are functions
of the form (8. 8) transforming with p = 1 and
getting mixed like the components of the nonunitary
representation (3(z — 1), 3(n — 1)).

(8.18)
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In this article we propose a variational approach to the study of nonlinear elastic solids in which magnetization
is constant in magnitude. The emphasis is placed upon the application of the different invariances used in
modern continuum mechanics: Euclidean invariance, objectivity, and material symmetry. In Part I, a variational
treatment is given in the spirit of “oriented media theory.” A comparison is made with the results of a direct
treatment starting with the postulation of balance laws. Part II is devoted to the development of constitutive

equations for a variety of material classes.

1. INTRODUCTION

In the literature there exist extensive works on the
theory of ferromagnetic materials. Earlier works
due to Weiss, Heisenberg, Dirac, Bloch, Van Vleck, and
Néel have been reviewed1-4, Most of them deal with
a quantum mechanical approach. However, we are
here interested in the theory of micrvomagnelics
where ferromagnetic bodies are described by means
of a vector field, the magnetization, whose magnitude
is constant and whose direction varies continuously
with position,5-9 Discrete details are omitted and the
theory is phenomenological, that is, in the spirit of the
theory developed decades ago by Landau and Lif-
shitz.4,10 This description is particularly accepted
at temperatures significantly lower than the Curie
temperature as emphasized by Minnaja8 who recently
gave a theory at high temperature with no restriction
on the magnetization amplitude. The formulation
given below does not consider the case of high tem-
peratures and, in fact, neglects the dependence on this
physical factor for most of the development.

The main purpose of the present paper is to formulate
a continuum theory of deformable magnetically
saturated media. The approach being phenomeno-
logical, ultimately it must be verified by experiments.
We are, however, guided by the quantum mechanical
results for the concept of spin. For instance, follow-
ing Brown, 11 we will make use of certain hypotheses
of the H.D.V.V. (for Heisenberg—-Dirac—Van Vleck)
model. In this regard the following remarks are in
order.

(i) The ferromagnetic materials possess high tend-
ency to orientation, i.e., without any important applied
magnetic field, the neighboring electron spins tend to
align parallel. HeisenberglZ? explains this fact in
taking account of exchange forces in the electronic
spin continuum through a potential representing the
spin—spin coupling. This effect leads to the notions
of magnelic anisotvopy enevgy and spin—wave motions
(Bloch13), Brown, in a series of books and articles!!
dealing with micromagnetism, shows that this leads to
the introduction of the material gradients of the mag-
netization in the free energy.14 We do not repeat
these arguments but take this result for granted.

(ii) The spin—orbit interactions and the quadrupoles
tend to orient the aligned spins along particular crys-
talline axes; hence the concept of magnetocrysialline
anisotvopy.

(iii) The temperalure agitationdisturbs the alignment
and causes the magnetization to decrease with in-
creasing temperature.

(iv) The applied magnelic field tends to align the
magnetization vector along the field. In contrast to
the effect (ii), opposite directions are not equivalent.
(v) The internal magnelic inlevactions: Dipole—dipole
long range interactions tend to rotate the magnetiza-
tion vector toward a direction of smallest magneto-
static self-energy (in the case of uniform magnetiza-
tion).

The effects (ii) will be taken into account in the non-
linear constitutive relations giving rise to a local
magnetic field due to anisotropy. Effects (iv) and (v)
manifest themselves in the form of the angular
momentum equation. We disregard (iii) since we
shall be dealing with nondissipative systems (with the
exception of Sec.8) for which we ignore the influence
of the temperatyre.

The theory is developed in the frame of quasi-
magnelostalics,electric fields being ignored. Thus,
we assume that the velocity of dynamical phenomena
is small in comparison with the propagation velocity
of electromagnetic perturbations; hence, the jump
conditions are written for stationary discontinuity
surfaces. We present a finite deformation theory.

The present work may be considered in the same
spirit as those of Brownl! and Tiersten.l5 Some im-
provements of the latter works are due to Amarilé
and Alblas!7? of whom the former developed a theory
with linear constitutive equations and the latter author
follows Brown closely. The basic results of the
present article, Eqs. (5. 7), (5. 8), (5. 4), (5. 10) and

(5. 12), can be brought in general agreement with

those of Tiersten and Brown. However we have
reasons to believe that our presentation is more
suited to generalizations (presence of current, dynami-
cal case, inclusion of extra degrees of freedom of
structural origin):

(i) We tried to emphasize the physical starting point
and the analogy of the magnetization vector with a
rigid divecior. By applying the Euclidean invariance
requirement, we have established the formal analogy
of the present theory of deformable magnetically
saturated media with the indeterminate theory of
couple stresses18 (cf.Eqgs.(7.26), (7.27), (8.19)-(8.21).
The formalism used is likely to encompass the intro-
duction of “mechanical” directors.
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In this article we propose a variational approach to the study of nonlinear elastic solids in which magnetization
is constant in magnitude. The emphasis is placed upon the application of the different invariances used in
modern continuum mechanics: Euclidean invariance, objectivity, and material symmetry. In Part I, a variational
treatment is given in the spirit of “oriented media theory.” A comparison is made with the results of a direct
treatment starting with the postulation of balance laws. Part II is devoted to the development of constitutive

equations for a variety of material classes.

1. INTRODUCTION

In the literature there exist extensive works on the
theory of ferromagnetic materials. Earlier works
due to Weiss, Heisenberg, Dirac, Bloch, Van Vleck, and
Néel have been reviewed1-4, Most of them deal with
a quantum mechanical approach. However, we are
here interested in the theory of micrvomagnelics
where ferromagnetic bodies are described by means
of a vector field, the magnetization, whose magnitude
is constant and whose direction varies continuously
with position,5-9 Discrete details are omitted and the
theory is phenomenological, that is, in the spirit of the
theory developed decades ago by Landau and Lif-
shitz.4,10 This description is particularly accepted
at temperatures significantly lower than the Curie
temperature as emphasized by Minnaja8 who recently
gave a theory at high temperature with no restriction
on the magnetization amplitude. The formulation
given below does not consider the case of high tem-
peratures and, in fact, neglects the dependence on this
physical factor for most of the development.

The main purpose of the present paper is to formulate
a continuum theory of deformable magnetically
saturated media. The approach being phenomeno-
logical, ultimately it must be verified by experiments.
We are, however, guided by the quantum mechanical
results for the concept of spin. For instance, follow-
ing Brown, 11 we will make use of certain hypotheses
of the H.D.V.V. (for Heisenberg—-Dirac—Van Vleck)
model. In this regard the following remarks are in
order.

(i) The ferromagnetic materials possess high tend-
ency to orientation, i.e., without any important applied
magnetic field, the neighboring electron spins tend to
align parallel. HeisenberglZ? explains this fact in
taking account of exchange forces in the electronic
spin continuum through a potential representing the
spin—spin coupling. This effect leads to the notions
of magnelic anisotvopy enevgy and spin—wave motions
(Bloch13), Brown, in a series of books and articles!!
dealing with micromagnetism, shows that this leads to
the introduction of the material gradients of the mag-
netization in the free energy.14 We do not repeat
these arguments but take this result for granted.

(ii) The spin—orbit interactions and the quadrupoles
tend to orient the aligned spins along particular crys-
talline axes; hence the concept of magnetocrysialline
anisotvopy.

(iii) The temperalure agitationdisturbs the alignment
and causes the magnetization to decrease with in-
creasing temperature.

(iv) The applied magnelic field tends to align the
magnetization vector along the field. In contrast to
the effect (ii), opposite directions are not equivalent.
(v) The internal magnelic inlevactions: Dipole—dipole
long range interactions tend to rotate the magnetiza-
tion vector toward a direction of smallest magneto-
static self-energy (in the case of uniform magnetiza-
tion).

The effects (ii) will be taken into account in the non-
linear constitutive relations giving rise to a local
magnetic field due to anisotropy. Effects (iv) and (v)
manifest themselves in the form of the angular
momentum equation. We disregard (iii) since we
shall be dealing with nondissipative systems (with the
exception of Sec.8) for which we ignore the influence
of the temperatyre.

The theory is developed in the frame of quasi-
magnelostalics,electric fields being ignored. Thus,
we assume that the velocity of dynamical phenomena
is small in comparison with the propagation velocity
of electromagnetic perturbations; hence, the jump
conditions are written for stationary discontinuity
surfaces. We present a finite deformation theory.

The present work may be considered in the same
spirit as those of Brownl! and Tiersten.l5 Some im-
provements of the latter works are due to Amarilé
and Alblas!7? of whom the former developed a theory
with linear constitutive equations and the latter author
follows Brown closely. The basic results of the
present article, Eqs. (5. 7), (5. 8), (5. 4), (5. 10) and

(5. 12), can be brought in general agreement with

those of Tiersten and Brown. However we have
reasons to believe that our presentation is more
suited to generalizations (presence of current, dynami-
cal case, inclusion of extra degrees of freedom of
structural origin):

(i) We tried to emphasize the physical starting point
and the analogy of the magnetization vector with a
rigid divecior. By applying the Euclidean invariance
requirement, we have established the formal analogy
of the present theory of deformable magnetically
saturated media with the indeterminate theory of
couple stresses18 (cf.Eqgs.(7.26), (7.27), (8.19)-(8.21).
The formalism used is likely to encompass the intro-
duction of “mechanical” directors.
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(ii) The variational principle given here in the frame
of quasimagnetostatics may be considered as first
step toward a fully dynamical theory. It is easily
shown that the introduction of our magnetic force is
equivalent to adding a magnetic energy +B2-B-M to
the strain energy pF. This magnetic energy is to be
varied under the constraint v°B = 0; thus, a veclor
potential A defined by B = VX A should be introduced
to carry out the variation. The extension to the
dynamical case including currents, polarization, and
time derivative terms in the Maxwell's equations is
easy since the constraint vB = 0 is unchanged for
such a generalization. Whereas Tiersten chose to
vary a magnetic energy ; H2 + H*M under the con-
straint v X H = 0. He thus introduced a scalar mag-
netic potential ¢through the relation H = —Vip. This
cannot be easily extended to the dynamical case (see
our generalization in a forthcoming article treated in
special relativity).

(iii) We performed the variation first in the un-
deformed configuration. The equations obtained, Eqgs.
(5.1) and (5.2) can be of interest for certain applica-
tions. For instance, if we go to the dynamical case, it
is after these equations that we shall study wave front
propagation (e.g., second-order discontinuities) for
the case of finite deformations.

(iv) For the case of dissipative media in Sec. 8, we
restricted the form of the constitutive equations by
use of the thermodynamic admissibility (Clausius-
Duhem inequality).

We may consider that the electric counterpart of the
theory presented has been approached by different
authors.19725 A synthesized theory of both fields in
the dynamical case remains to be done. We deal with
this problem in a forthcoming article.

The notations used hereafter are similar to those
used in the treatises of Truesdell and Toupin26é and/
or Eringen,27 the first chapter of the latter being
worth reading for the reader not familiar with the
formalism of modern continuum mechanics. The most
frequent notations appearing in the subsequent
developments are the following ones. Capital kernel
letters and indices refer to material coordinates, i.e.,
Lagrangian coordinates. Lower case kernel letters
and indices refer to spatial coordinates. A capital in-
dex following a comma, or a symbol V, indicates par-
tial differentiation with respect to the material co-
ordinates X% K = 1,2,3. A lower case index follow-
ing a semicolon or a symbol V indicates covariant
partial differentiation with respect to the spatial co~
ordinates x* k2 = 1,2, 3. Colons are used to denote
covariant total differentiation of two-point tensor
fields. A superposed dot or the usual symbol d/d¢
indicates material derivative. Parentheses around a
set of indices denote alteration, €¥* is the permuta-
tion symbol. For instance, we write

Vea=di,, (Va); = ay

VerA = A, (Vga)g=agg
(va)'bli = ak:ibk’ (a°v)bli = akbi:k‘

2. THE SPIN ANGULAR MOMENTUM

In classical physics, it is well known that the elec-
trons and other particles possess magnetic moments.
Thus, in an electronic spin continuum, one can define
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a magnetic moment per unit mass. For a deformable
medium, a magnetic moment per unit of undeformed
mass, p, is posited to exist at each point of the body.
The magnetic moment of a specimen (B;) C E3 is

9Jl=f Pr KUy, :f pdmy
(Bp) (Bg)

(2.1)

where p, is the material density in the undeformed
body (B;) and m, a mass measure in (B;) embedded in
Euclidean space E3.

We assign an intrinsic angular momentum s, called
spin, to particles such as electrons, muons, pro-
tons.28,29 The spin angular momentum is related to
the magnetic moment u by3°

p =Ts, (2.2)
where the quantity
T'=—ge/2me, e>0, (2.3)

is called the gyromagnelic vatio with:

e = electric charge of the particle,

m= mass of the particle,

¢ = velocity of light,

£ = coupling constant (= 2 for electrons).

From here on we consider the case of electrons. The
medium is thus described by an ensemble of particles
to each of which there is attached a vector u. We
propose in Sec.3 a Lagrangian formulation for the
equations governing the behavior of a deformable
magnetized medium. The first question that must be
answered is what is the form of the spin angular
momentum term in the variational principle?

It is clear that this effect is of gyroscopic nature.
This is shown by considering the analogy of a spinning
magnetized element of material with an axisymmetric
top (cf.Art.5.7 of Ref.31) of moments of inertia

(A— 0,A— 0,C > 0),32 It then appears that the rota-
tion angle ¥ of the top about its own axis is an ignor-
able variable. It follows that the corresponding
generalized momentum p, is conserved. Since the
magnetized medium is considered to be saturated, i.e.,

pep = pZ = const, (2.4)
the analogy is carried on by taking
Py = pr /T = const. (2.5)

It can then be shown that, in cartesian coordinates, the
Routhian3! or reduced Lagrangian density R of this
special top is an expression /inear in the components
of [t(ct., Ref.7, p. 28, also Ref. 17). This asserts the
gyroscopic character of R. Thus, introducing the spin
angular momentum per unit volume of undeformed
material G = — py u /T, we can consider the quantity
— dG/dt as d'Alembertian inertia couple.15 In an
actual motion, its rate of work vanishes as can be
easily verified,

_4aG
dt

where w is the angular velocity of the magnetization

.w:O (2-6)



MEDTIA. I

p. Indeed, differentiating Eq. (2. 4) with respect to
time, we have

u’n"" = 0 (2- 7)
which implies

"1 =w X u, (2. 8)
where

w= 52 XA+ g2 (pew)p. (2.9)

In a virtual motion, the expression (2.6) is different
from zero. Note that the angular velocity w of p is a
kinematical or nonholonomic vector33,15 i e, it is not
the time derivative of an actual vector function. Thus
there exists a vector A@ such that A8 = wA¢{, which is
merely an infinitesimal change of angle and not the
differential of a vector function. Therefore, in a vir-
tual motion, we write, instead of Eqs.(2.7) and (2.8),

pdp =0 (2.10)

Sp = 60 X p, (2.11)
with

00 = 1;2p X 6p + u32(p60)u, (2.12)

and the virtual work 6w done by the d'Alembertian
inertia couple in an arbitrary variation is

dw = pp T~1f1+60. (2.13)
R

Hence, we take account of the spin angular momentum
in the variational principle through an already-varied
term oW that is not included in the Lagrangian den~
sity. Integrating Eq. (2. 13) over the whole body (B;)
and over time we obtain

6W = fdt [ p,T-1p-86duv,.
£ (By)
An alternate derivation of Eq. (2. 14) based on thermo-
dynamical considerations is given in Appendix A.

(2.14)

3. THE VARIATIONAL PRINCIPLE

To every material point X of a deformable body we
assign a vector p called magnetization. This vector
considered as a director provides a non-constvained
Cosseral continuum.18 The origin of g cannot trans-
late with respect to the material point, but u can
rotate independently of the material motion. The com-
plete motion of the continuum is therefore described
by two sets of equations:

x = xX, ), (3.1)

r=xpX, . (3.2)
The material gradients defined by

F, =Vpx, Fu=Vaxy (3.3)

are essential in the following development.

The action associated with the body (B) enclosed with-
in a surface (2B) and considered in the interval of
time [t,, t,] is given by

t2
A= t{ ‘”(BL £(x, X, i, F, . F, X, vy, (3.4)
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where the subscript R indicates the reference con-
figuration. The presence of X in the Lagrangian den-
sity indicates the possible inhomogeneity and those of
the gradients F, and F,,the mechanical and mag-
netic stresses. The absence of higher order spatial
derivatives of the motion other than the first shows
that we are satisfied with the study of a hyperelastic
medium,34 i.e., a nonlinear elastic medium with con-
stitutive equations derivable from a potential (this

is to be compared with the classical theories of mag-
netostriction and ferromagnetic bodies). The body is
assumed to be magnetically saturated. Thus,
pep=p2=const and pp=0 in(B). (3.5)
These constraints may be introduced into the field
equations by means of Lagrange multipliers A and

IX, K = 1,2,3. Following the tradition set by
Lagrange and Piola in formulating the principle of
action, we introduce indeterminate multipliers for
each term that can arise in varying x and p in-
dependently in (B) and on (B). We define

oW* = [dt [ pplbex + bledyu)duy,
P (Bg)

+ [dt | (to0x + t{)ep)ds,
t (2Bg)

— (m+5x + mW «Sp)dv, |72, (3.6)
%{)PR L R]tl

oW = — ctfdtwf (Ao — p2) + Le(ue ) ldv,
dt | +50dv,. (3.
+tf t(%fe)(pk/l“)ﬂ. Odv,. (3.7)

The variational principle that.follows earlier formula-
tions of Hamilton's principle35,36,46 can now be ex~
pressed as:

BA +0W* +0W =0 (3.8)

In (3.6) and (3.7) we introduced the following quanti-
ties associated with the reference configuration:

pr = mass density,

b = body force per unit mass,
b{¥ = magnetic field,

t; = stress vector,

t{¥ = magnetic stress vector,
m = momentum per unit mass,

m{¥ = magnetic momentum per unit mass.

The expression (3.6) represents the virtual work of
body and surface loads acting in (Bg), on (3B;) and at
the time limits in (B, ). The first term of (3.7) takes
account of the holonomic constraints (3. 5), while the
second term is an already varied term (so called
Hertz' nonholonomic constraint33).

4. VARIATION OF THE ACTION

Since (Bg) is the reference configuration of the body,
we have

0A =0 Jdt | Ldv, = |dt 0L dvy, 4.1

i[ (B{;) R tf (a{z) R @1
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where
_9L, oL .
L = 5 6x+—§6x+ o + 5x +O
oL oL
+ a—F;c'éF;c + a—FT(‘;-) '6F'(H) (4. 2)
and according to Sec. 2
6 = — p X 66. (4.3)
We make use of the following identities:
t
fT oxdt = 2% mﬁ ;[dt (22) woxat, (4.9
t
oL 2
*OF dv, = 0X)d:
(I!R)BF f u{z)an R (0x)dug
oL
~ f F N 6xdsg,
(¢gp *
' oL
RN Joee (4.9

where N, is the unit exterior normal to (3B;). In
(4.4) we interchanged the 6 variation with the
material derivatives, and in (4.5) we applied the
Green-Gauss theorem. Similar expressions are valid
for terms involving 0£/9p and 0£/9F .

Equation (3. 8) now is

d (3L 2L
tfdt@a'[ - (%) - % (aF ) +pr] "ox
0L d (oL 28

* {m _d_<_ﬁ>_ VR(E?@)
—(A—% L)u+pr(P)J 5#5dUR
9L
AN LA R
prdsy + jdtf (/T )l b6duy

N (Jgkpﬂm_%?)'ax

t
3L 2
(W — %22 \op |dv —
(pRm # an) u} R] ‘) 0

and holds for independent variation of x and p (equiva-
lently 58) in (B,) and on (25;). Hence

N, +

- (L'NR )”' 8

(4.6)

aL oL
ppMm = ==, ppmw = B at t=1t,, t=1#, (4.7)
0L .
Vo'Tg + ppb = ppiit — == in (Bg), (4.8)
[% "I + o ®W + b*W) — (1 — GeL)u]
X p= pRIh(”) X g+ (PR/F)I:L in (BR)’ (4' 9)
and
T,*N; =t, on (0B,), (4.10)

[TYO N, — i + (LNg)p] X p = 0 on (3Bp), (4. 11)
where we defined the following suggestive symbols:
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TR = E, TR# = _EF(_—;’ pr (W = —u. (4. 12)

In order to associate various mathematical notions
obtained with physical concepts, we now consider a
particular Lagrangian:

£ = pp[L %2 — F(F,, 4, F,y, X); (4.13)
hence, we have
ppm = ppX = p,v,  ppm) =0, Db*W
- %g (4.14)
Tp =rg ggx ;T =g %‘%’
Beo Zoo (a1

In the expression of the body force b, we distinguish
the purely mechanical part and the magnetic contribu-
tion, i.e., we write

PrD = PP @mecnt pr(magn)’ (4.16)
Without any damage to the calculated values of
observable physical forces, one is at liberty to choose
a formula for the ponderomotive force with a large
degree of arbitrariness. This was emphasized by
Sedov and others.37,38 Here we take
(4.17)

b(magn) = (VB) ‘u, i-e-, b(magn)k = Bi'.k[.Ll

and
b(mech) =1,

bW = B, (4.18)

where f stands for the mechanical body force per unit

mass (e.g., gravity) and B is the Maxwellian magnetic

field subject to Maxwell's equations given by:
VXB=VXpp, V-B=0in(@B),
VXB=0, V.B= 0outside (B),
nx|[B—pp)=0 n+[B)=0across (3B).

(4.19)

Here p is the mass density in the deformed configura-
tion,n is the unit exterior normal to (3B) and [A] =
AY —A-,

The expression (4. 17) is that resulting from the
analysis of Dixon and Eringen22 for the case of
magnelostalics,when no discontinuity surface exists
in (BR) and the currents ave neglected. It also results
in the same conditions from the relativistic treatment
of Grot and Eringen.39 For the analysis of surface
tractions on (0B,) and for the case for which a dis-
continuity surface exists in (B ), the surface terms
corresponding to (4.17) are derived in Appendix B.

5. FIELD EQUATIONS IN THE DEFORMED CON-
FIGURATION

We call T the “macro” Piola stress tensor and by
analogy with the couple theory, T the “micro” Piola
stress tensor.49 Eqgs. (4. 8) and (4 9) with (4. 14),
(4.15), (4. 17) and (4. 18) take the form:

aF R
Vi '<PR 'aTx> + pr + pR(VB)'I‘» = pgﬁ’ in (BR), (5.1)
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ki > 3% )]
lot) oo -8
Xp= f;;, in (Bg). (5.2)
In component notations, we have
BEF
(TR) K= pR (5'3)
K
Introducing the Cauchy stress i by
0F
ThK :JXK'ltkl, t/; pa—— xg.K’ (5.4)
X K
where
J = Pr /Q, (5- 5)
and, via the identity41
(JXE).x = 0 (5.6)

Eq. (5.1), in the deformed configuration, takes the
form

t;el;l +pow Bl +pf, =pdin (B) (5.7)

If the same approach is considered for the “ magnetic

stress” (not to be mistaken with the Maxwell stress
tensor)
(T(u))‘[{K = JXK,Z““);\,Z’ [(;1);{ 'k, (5.8)

U-R,K
then (5.2) takes the form

Eiwu/(p)f:lum + ei/em(Bh + LB;< )“m — (p/l")}li, (5.9)

where we have set

=b*w, (5.10)

q.(5.9) is a torque equation which may be written
conc1se1y

ph = IB (osr) X M, M = pp, (5.11)

with

Bess) =B + 1B + 07 (p g0 ). (5.12)
&
Equation (5. 11) is an equation for the balance of mag-
netic angular momentum where the angular velocity is
given by an effective magnetic field which includes the
anisotropy effect through ; B and the exchange forces
due to the presence of material gradients of the mag-
netization. These latter reflect the neighboring spin
interactions according to Brown,14

Introducing the dual S of p

S = dual u,i.e. S, = €, W, (5.13)
with

w2 =yt = 35,5%
Eq. (5. 11) may be written in the following form

pSk = 2TBl% M1l (5.14)

which provides a useful suggestion for the equation
satisfied by the spin tensor in four-dimensional analy-
sis.
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6. BOUNDARY CONDITIONS

Using the relations (4.10), (4. 11), (5. 4), and (5. 8) we
can give a set of boundary conditions on (03) in the
deformed configuration. In the absence of any
mechanical couple stress vector on (3B8) and the mag-
netization being zero outside (B), it is reasonable to
take t{# = 0 on (0B). From (4.10) and (4. 11), it then

R
follows that:

psy—xt gn, = t, = 7 — (M:[B]n, on (3B) (6.1)

K

since, similarly to the decomposition (4. 16), we set on
the frontier(oB)

by = Ty M+[B])n,,

+ t(e/n)k’ t(em)k =

where 7, is a mechanical stress vector prescribed on
(8B) and the second term is the magnetic contribution
to the surface traction (cf. Appendix B).

With the foregoing assumptions, Eq. (4. 11) yields

pu[m—-ag— xl gn, = 0on (3B). (6.2)

0 ﬁlk],K
It is clear that the Lagrange multipliers became ir-
relevant in the formulation. Nevertheless one can
determine them (or at least the combination A —V, * L)
since we should take in all rigor from (4. 6)

8F
ou
but clearly from Eq. (5. 9), only the part of ;B orthogo-

nal to p is of importance, and, without loss of general-
ity, we may take

B=— — (A — Vg L)u, (6.3)

Brp =0, (6.4)
hence the value of (A\ — VL)
A —VpL=— L 95, (6.5)
pZ op
Remarks

(1) The equation of energy can be arrived at by
manipulating Eqgs. (5.7) and (5. 9) but we provide a
more direct approach in Sec. 7.

(ii) Steady discontinuity surfaces will be dealt with in
the next section. Their introduction requires an appro-
priate extension of the Green—-Gauss theorem, (see
Generalized Green-Gauss theorem in Eringen, Appen-
dix of Ref. 34.

(iii) The equation (5.11) obtained from the Lagran-
gian density (4. 13) describes a rotation of g in the
plane formed by the magnetization p(at ¢ = ¢,) and the
effective field B ( ;) Of the equilibrium condition. It
is however observed43 that the vector p spirals into
parallelism with B .y, an effect that can be repre-
sented by adding a dampingtermto Eq. (5. 11). Though
we restrain from introducing a too special form of
dissipation (this would be inconsistent with the non-
linearity of the nondissipative terms derived from the
potential §), this could indeed be taken into account in
the present formulation. All we need to do is to add a
term

fdtfgg{ * dpdug
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to the expression (3.8). With @ a damping coefficient,
the Rayleigh dissipation density ® is defined as

(@) & = %PROUJ}lIIZ-

Equation (4. 9) when transformed into the deformed
configuration would then yield

(b) T4 = Begry X o — (a/p ) X p.

The last term of this equation which describes the
approach of p to B ) in a more realistic manner
than Eq. (5. 11), has already been introduced by Gilbert
and Kelley44 and is known to give a good description
of the loss mechanisms in a number of applications in
ferromagnetic resonance; in fact abetter description43
than the supplementary term A(B .¢) X p) X p intro-
duced earlier by Landau and Lﬁsiutz 10 For small
damping,we can replace [t in the last term of Eq. (b)
by its value given by Eq. (5. 11) and, setting A =
—al/ 4y, we obtain an expression similar to that of
Landau and Lifshitz:

Tl = Biegry) X 8 + A Bogp X ) X i,

where B (.4 in general contains nonlinear expres-
sions.

7. EUCLIDEAN INVARIANCE REQUIREMENT

We now apply the requirement of Euclidean in-
variance (i.e., Galilean invariance) first used by the
Cosserats45 and taken over by Toupinl8 (see also
Maugin46), It allows us to obtain the balance equa-
tions including the equation of energy balance by
application of Noether's theorem of invariance for
the group of transformations

X% = 2K, %) = QMK 1) + cF,
pre = p kX 1Y) = QAudX, ¢t), (7.1)
*F=t—a,

where ¢ is an arbitrary constant vector,Q is an
arbitrary constant proper orthogonal tensor and a is
an arbitrary constant. Invariance under (7.1) repre-
sents the restrictions to be placed on the field equa-
tions deduced from the variational formulation under
the group of rigid body motions and time shifts.

We consider infinitesimal transformations generated
by (7. 1) specifically, three sets of variations corres-
ponding to these infinitesimal transformations:

(i) shift of coordinates:

bxkt =dk, Ouk =0, (7.2)

where d is an infinitesimally small constant vector.

(ii) rotation:

ox* = eQkx’  Suk = eQkul, (7.3)

where ¢ is infinitesimally small and Q is an arbitrary
constant skew symmetric tensor,

(iii) shift of time:

(7.4)

I .
oxk — %%,  ouk— gk = etmou
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where w is the angular velocity of p. We shall also
use 2, the dual of w defined by

Qi = eiitw,, (7.5)
We set
Ay = agmy + “[k‘m(zf)’ Ay =—Ay, (7.6)
€ = mpit + mOpt — & /0g), (7.7)
PrKG Ex/e% + ué;,a% tx k%e; * “k:‘f}
+ X, azl,x ”A'Kalajjx (7.8)

€ is called the energy. A form more interesting can
be given for 6W. First the constraints (3. 5) can be
discarded as has been shown above. Second, since 50
is arbitrary and dual Q represents a rotation of the
same nature, we can take

60 = e dual @, i.e., 00 = seci*Q;,. (7.9)
Thus, using definition (5. 13), we have
f60=1 es'lezk_ (7.10)

Necessary and sufficient conditions that (3. 8) holds
for the special variations (7.2)~(7.4) are:

pom.dv, |t — [dt [ ppb.dv
(BRirR)R ' R]‘l tf (B{)R TR

~Jar J

j L
i (2BRp-Tp)

(tp);dsp = t]dt(B J (7.11)

_f PRAkszR]if - fdt f pR(x[kbl] + by

(8,
— Jat f {x[k (tehy + #[k(td")zl}dsa
¢ ( BpIp)
+ fdt f (pR/ZF)Skzd”R = fdt f PrKpdvg,
(8, -T) (1. 12)

t
f Fr €din:| 2
(By=ry) ty

+jdt I
— [at

— Jat [ pp(byik + ppRQit)du,
t (Bp)
(b /2T)8,, Qdv,,

f {(€R)e2® + 1, (tW), 4} ds,,

i (aBp-Tp)
oL
tf (BRIP FI3 R

Here we have considered a steady discontinuity sur-
face (T) in (Bg).

We say that the variational principle satisfies the
Euclidean invariance requirement if and only if:
oL 9L
a? = 0 K[ A1 = 0, W
If these conditions are fulfilled, then (7,.11)-(7.14) are
the globalbalance laws in the reference configuration,
i.e.,the conservation of momentum, moment of
momentum, and the conservation of energy for the
body (B ) as a whole for nondissipative processes. To
them must be adjoined the integral form of the con-

= 0. (7.14)
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servation of mass:

ppdv, = const. (7.15)

(Bp=T'g)
Note that, according to Appendix B, the total body

force (for the case of magnetostatics, with the cur-
rents neglected) reads:

ppbdv, = prif + (VB)-p}dv
(é[R) ROUR (BR—er) ® "
+ [ JF;1-N,(M:[B])ds. . (7.16)

(') &

In order to establish the second term in the reference

configuration, we have made use of the identity

VF-N, = 0 (7.17)

which follows from (5. 6).

Upon using a procedure similar to that used by
Toupin!® and Maugin46, the special form (4.13) and
formulas (4. 12) and (4. 15), it is not difficult to show
that (7.13) can be written in the form

fat [ pyFdvy,— [at |
i (BgTp) ;o (BRTg

— Jdt TkEx, + w,TWEQA]IN, ds
Z[ (Fﬁ)[ k 223 1 ] KT,

)pR p./;b(lﬂ)Q”* dvg

+ |dt (T}*K)é + p, TWEQL v, = 0,
tf(BRf-FR) kK k4] ,K/4YR (7.18)

Equations (7.11), (7. 12), (7. 15), and (7. 18), subject to
(7.14), are posited to be valid for every part of the
body and the discontinuity surface (I;}). The local
balance laws in the reference configuration (and after
some transformations, in the deformed configuration)
follow.

(a) Equation of momentum balance:

g—t(pv’*) = (LkP + tkby — pvhup),, + pf in (B —T),
(1.19)
[t% + t6y — pvivf]n, = 0 on (T), (7.20)

where we have used (4. 13). Here {#? is given by the
second of Egs. (5.4) and we have set

t(ﬁ}l)n);p = po;k“'p ’ (7.21a)
[ties)m, = M [Bnk. (7.21b)

(b) Equation of spin angular momentum:

Introducing the notations:
Ly=—ud¥, Dy = u,M®, &, =D, +(1/2I)S,,
(7.22)

M —_
par = — Hpt88 (7.23)

where, for the lack of better terminology, we call L
the body couple, D the extrinsic spin (in opposition
with the intrinsic spin S/2T'), 8 the total spin and M
the magnetic couple stress (a third order tensor). We
obtain from (7.12):

P(Spuy + Apumy) = My, +pLyy + ;) in (B —(T‘),z )
T.24
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Mup + x40+ AR o]y, = Oon (T).  (7.25)

Upon use of (4.13), (4.19), and (7. 21b), these formulas
reduce to

(p/2T)Spa = Mpar, + tlar} + pBlrua) in (B —T), (7.26)

[xletalr + Mpon, + (M+[B])xlPna} = Oon (T). (7.27)
Eq. (7. 26) looks like a couple stress equation.18 We
emphasize here the analogy existing between the
manifestation of extra degrees of freedom due to ex-
ternal causes (i.e., magnetic field) and those due to
pure mechanical (or structural) causes (e.g., micro-
polar theory47). This analogy persists throughout the
treatment.

(c) Equation of energy:

From (7. 18), on account of (4, 13), (7,22), and (7. 23),
we obtain

p§ = pLAQy + thy,  + MAmQ,  in (B —T)
(7.28)
[t%0, + tlkyv, + MPAQ In, = 0 on (T) (7.29)
(d) Equation of continuity:
% v =0 m(B-T), (7. 30a)
[ov]n =0 on(D). (7.300)
(e) Boundary conditions:
They are
tk = tkin, on (8B —T), (7.31)

where ?; is given by the right-hand side of Eq.(6.1),
and

pqr

Gm’ =0 on (8B —T). (7.32)

The latter is obtained by letting the surface of dis-
continuity (I') coincide with the frontier (3B) in -
formula (7. 27), the magnetization vanishing outside
(B). M‘Z‘.”) is the interior value of M®" on the surface
(8B). "

Finally we recall the constitutive equations. They are
given by the definitions

oF
t,l=p
k axh

X" ks

£7. 33)

xl,K,
K al“'q].K

Equations (7.19), (7. 20), and (7.26)—(7.33) constitule
the fundamental set of field equations, boundary condi-
tions and constitutive equations for the theory of mag-
netically saturated elastic solids (for the case of
quasimagnetostatics with the curvents neglected).
They are supplemented with the Maxwell's equations
{4.19) to which must be adjoined the jump relations:
n:[B]=0, nX[B]l=nX[pp]on(I). (7.34)
The field equations are identical to those found in
Sec.5, except for the spin angular momentum equation.
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In fact, even Eqs.(7.26) and (5.11) are identical. This
is shown as follows:

From the definition (7. 8) and the expression (4. 13),
we find that the second of Egs. (7. 14) gives:

0F 0¥
— X + gy +
ax[’*_K LK o ulk il

b = 0. (7.35)

a“[k'K

Upon use of the first of Eqs.(7.33), Eq.(7.35) (which

is referred to as the “Euclidean invariance require-

ment”) yields a constitutive equation for the antisym-
metric part of the stress tensor:

0F 0

ta = = p(f b+ = o)
[£D 1) aﬂ[k,x i,k

e (7. 36)

This is identical to Eq.(7.53) of Brown.!1 It will be
shown in Part II that, as a consequence of the objec-
tivity requirement, the last term of (7. 36) vanishes.
Therefore if we set, as in Sec. 5:

oF

B, = ——— (7.37)
a“/e
we get
Lien = poLB 1y (7.38)

Finally, upon carrying (7.36) into (7.26) and using the
second of Egs. (7.33), we obtain Eq. (5.11).

8. DIRECT APPROACH THROUGH BALANCE LAWS
A. Nondissipative Case

It is of interest to compare the foregoing variational
treatment with the direct approach based on the state-
ment of the global balance laws. The latter follows a
thorough analysis of the forces and couples acting
upon the continuum. In a paper,15 Tiersten has con-
structed such a model. In his description, the elec-
tronic spin continuum built up of magnetization vec-
tors attached to each material point is assumed to
possess properties such as those enunciated in Sec. 3.
The balance laws are stated and are similar to the
set (7.11)~(7.13), and (7.15) but for the moment of
momentum equation which is split into two parts due
to the coexistence of two continua that can rotate in-
dependently. The moment of momentum equation of
the continuum built up of the material points gives in
our notations

ten = By in (B —T), (8.1)
and the spin angular momentum equation of the elec-
tronic spin continuum reads

(p/T)at = pe*(B; + By + p~1t{w) myut

+ El]k[(’;) m“’k;m in (B - F), (8'2)

€Y [ujt(#)z”‘]nnl =0 on(I). (8.3)
1t will be shown in Part I, while studying the objec-
tivity, that the last term of (8.2) is zero. Therefore
(8.2) is similar to (5. 9). We may say that the struc-

ture of Eq.(8.2) resulted from two postulates:

Postulate A: Motivated by the classical formula of
Larmor precession, it is posited that the couples act-
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ing on the electronic spin continuum are of the form
® X M where M is the magnetization per unit volume
and @ is a quantity proportional to a magnetic field.

This is of course a kind of petitio principii since the
postulate gives at once the final form of the equation
satisfied by the magnetization field. No such postulate,
except for the action of the Maxwellian field, has been
used in the variational treatment.

Postulate B: The short-range vector field describ-
ing the interaction between neighboring spins satisfies
a principle similar to the Cauchy principle for stres-
ses, i.e.,

te = léf)"l, (8.4)

where n the unit positive normal to a two-dimensional
surface element.

According to Postulate A, the neighboring spin inter-
action produces on the magnetization field a surface
couple of the form:

W x M, (8.5)

Hence, the following form of the global electronic
spin momentum balance:

d PE,

4 i od tw x Mds
dt EB-D I

(8.6)

v

1l

J B+ ,B)xMav +

(B-D) (38-T)

which yields (8. 2).

Note that Tiersten's approach permits us to grant a
physical significance to ;B. It represents the local
interaction between the material continuum and the
magnetization field, This interaction verifies the
third law of Newton. Thus, ;B appears in both equa-
tions (8.1) and (8. 2).

Furthermore, we note that Tiersten uses a form for
the magnetic forces which differs from ours, It can
be shown, by a redefinition of the stresses and of the
potential F,that the two forms yield equivalent field
equations, The statement of balance laws as a start-
ing point, in contrast to the variational treatment
given above,48 allows us to deal with dissipative pro-
cesses. In that case, the balance of energy equation
takes all its importance and we need consider the
second law of thermodynamics in order to obtain re-
strictions on the constitutive equations.

B. Dissipative Processes

According to Tiersten,15 the global balance of energy
equation is
d

W(B[F)(%pvz + pe)dv

= j {tow + W X M)ew + qenjids
(2B-1)

+ [ {BXM)w + e,V +pfev + phldy,

(B-1) (8.7)

to which we add the second law of thermodynamics
postulated as usual as49

d h
dv — —dv — 6-1q-nds = 0.(8.8)
dt (B[r)pn (B:{I‘)p 6 (af ) 4 (

B~
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In these equations, we have defined the following quan-
tities:

internal energy per unit mass,

]

entropy per unit mass,
thermodynamical temperature,

I

heat supply per unit mass,

I

heat flux vector,

it

€
n
6
h
q
w = angular velocity of the magnetization,

f(elm): t(lekm);k = pB*huy.

Upon using the standard procedure, we deduce from
(8.7) and (8, 8) the local equations

DE' = t&lvfe;l + t(“)qrp'q;‘r - pLBq’lq .
+ gk, +pi in(B—T), (8.9)

p1i — (q#/6)., —6~1ph =0 in(B—T), (8.10)
[Gov2 + peyvt + tihy, + W, — g*ln, = 0on (T),
(8.11)

[q¢*/6 + pne*]n, = 0 on (T). (8.12)
We decompose v,., into its symmetric and skew sym-
metric parts:
dip = V@ierr Wi = Vil (8.13)
On account of (8.1) and (8. 13), Eq.(8.9) can be writ-
ten in the following form which proves to be adequate

for the discussion of the Clausius—-Duhem inequalityS0:

pé = thdd,, + tWap —p B,
~pp.[/*LBUwM +q4, +ph. (8.14)

Upon substitution of ~ from (8. 14) into (8. 10) and in-
troduction of the free energy per unit mass ¥ by the
relation

¥ = ¢— b, (8. 15)
we obtain the Clausius~Duhem inequality:
- (p/G)(\i' + 977) + 6_1 t(kodél —"g' LBk(l-lk ~'®‘lkuz)

+ 07 W+ 07%%6, =0 in (B —T), (8.16)

Note that
qu = “-3-2 ;L[P;lq]. (8.17)
Thus,
tWary = Marg,
“r i (8. 18)

p B, = p,Blepdlq,

and Eqgs.(8.9), (8.11), and (8. 16) can be equivalently
written in the “couple stress” form
pé = thu,, + MEYQ .+ ppd BrQ,

+ gk, + prtin (B—T), (8.19)

[Gev2Z + pe)ok + tiky + MBkQ, —gk]nt = 0 on ((I‘), )
8.20
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— (p/0)(¥ + fn) + 0~ Lgrivt, + gTIMETQ,
+ (p/0)n9 B, + 8-2¢"6, = 0in (B —T). (8.21)

If the medium considered is nondissipative,then
g% = 0,h = 0,and € can be replaced by the strain
energy function ¥ in (8.19). Hence (8. 19) becomes
identical to (7.28) while (8. 21) takes the equality
form.

It remains, in this approach, to determine the con-
stitutive equations. In this regard, the following re-
mark is in order: In Sec.4, the first two of Egs. (4.12)
are pure definitions, In this subsection ¢ %! and

t{wkl have been granted a physical significance since
the postulation of balance laws but their form as func-
tion of the constitutive arguments is still unknown,

It is the purpose of the next paragraph to arrive at
their form in order to compare to preceding results
(5. 4b), (5. 8b) and (5.10),

C. The Positive Entropy Production Requirement

Following Eringen,5! we require (8. 16) or (8.21) to
be verified for any independent dynamical processes.
Constitutive relations for the nondissipative parts of
the constitutive variables will follow. We assume
that the constitutive variables ¢%,t(w k! and ,B" pre-
sent recoverable and dissipative parts. Thus we set

pRL = lel i Dtkl

& k
=18 g
1Rl = R &l DEGDARL

I

(8.22)

In the sequel, the recoverable parts are shown to be
derivable from a potential, the free energy ¥. In
agreement with the form (4.13), we consider a non-~
linear elastic solid of grade one of which the free
energy may be written as

¥ =¥ (F,,u,F, o X). (8.23)
In taking the time derivative of ¥, we take account of
the constraints (3. 5) by introducing four Lagrange
multipliers A and LX, K =1,2,3. Thus

b= P e+ B e By
dxty ot duty
+ Mgt LEQRi, o + ppiixd), (8. 24)
in which the following identities have been used:
X = v;i]'x,jK ’
(8. 25)

wig = W00k,

Upon carrying the expression (8. 24) into (8, 16), we

obtain
Xk — p‘%—) dii — %(a—‘p + n)é

_ g(ﬂ
g ax(lK 90
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+ 0710y — (p/8) BB (i), — W yut)

+ (p/0)Ptwkiy . + 672g%0 , = 0, (8. 26)
If this is to hold for any independent dynamical pro-
cesses (i.e., variations d;;, @;, i, {ii;, 6), the follow-
ing equations must be satisfied:

RrGj) = 0 0¥ xj}% ,
OX(i,x
[ij1 v jl i (8.27)
&= p = xlp=p B,
Xri K
Epi=— (ﬂ + Apt + LKM") (8. 28)
L - a“i LK 2 .
RpWii = p 0¥ i+ pLEpixd 2
=P Xg T PLTUX g,y (8. 29)
o
n=—%5. (8.30)
Equivalent to (8, 29), we have after (7, 23)
v
RMmr =p 3 uq]x:‘K " (8.31)

Bipx
with
Mbpar = R)Mpar + Dppar,

The nonvanishing part that remains in the lhs of
{(8.26) is a constraint imposed upon the entropy pro-
duction:

po1 = Dtk Ups — pli)kalk + Dt(u)kl‘lk,‘l + qk;k + ph.
(8.32)
The Lagrange multipliers are found by noting that

only the components of ;B and t W orthogonal to u
are of importance. We find

Mo 0¥ pk
Opky 12
N AL (8.33)
Tt 2
We set
Dkl — gBk = Dp(W kil = Dpfrar = (), (8. 34)

Then, upon use of (8.28) and (8. 33), (8.1) becomes
tL ALY -_—._.p_?_‘l.l_ wiil+ p__a'_\l’_ p

. ™" = (8.35)
I“"[k M ar M

ple yypd .

The last term will be shown to vanish when we study
the objectivity in Part II. Furthermore, upon carrying
(8.28) and (8. 29) into (8. 2), we obtain explicitly:

(/T = Pez]kl:Bj “‘5,.7 - Lxﬂj,x — (A =V L)y

- o
+ p71 <P %0, xf’fK);m]Uh

- o
+ etk <P Y x’.nK>“‘k sm e
Mk

(8.36)

Given the degree of arbitrariness in the definition of
the constitutive variables when one constructs a
model, we can adopt the new definitions

1B, =— —

(8.37a)
7 a“]

LK“J‘.K’
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o¥
W m=nZ=_ 4m
L, p‘aﬁjx X" . (8.37Th)
Note that the combination (A —V, * L) already encoun-
tered in Sec. 6 is of no importance and the correspond-
ing term can be dropped in Eq. (8. 36).

The set of results is in full agreement with those of the
variational treatment except for the constitutive equa-
tion (8.37a). The complete similarity is arrived at
after the study of the objectivity requirement3! in
Part II,

9. THE EINSTEIN-DE HAAS EFFECT FOR A BODY
AS A WHOLE

It is well known that a freely suspended body, on be-
ing magnetized, begins to rotate. This is the Ein-
stein-de Haas effect.52-54 The inverse effect exists:
A uniform rotation causes a magnetization linearly
dependent on the angular velocity (this without any
external magnetic field), It is called the Barnett
effect.54~56 Let us show that these effects are con-
tained in the foregoing theory.

We add Eq. (7. 26) to Eq. (7.19) to gather all contri-
butions, that is, mechanical and magnetic, in the

total local law of conservation of moment of momen-
tum. After integration over the whole body (B) and
transformation of some terms, we use the Green-
Gauss theorem (discarding discontinuity surfaces
which add nothing to the present result) for the di-
vergence terms. On account of the fact that the con-
servation of mass (7. 30a) can be written in local
form

d
7 (odv) = 0,

we obtain the global conservation of moment of mo-
mentum in the deformed configuration

d . d p
- Xy XA = — ¢ - §,, dv
dt u{)p LA dt ufz) or " H

+ £kl(mech)+°ckl(magn)’ 9.1)

where we have used (7.16) and set

£ = fpx f,,dv + X, 7T,.ds (9. 2)
ki{mech) (3 (k1] (ag) [R111%%

Lhr(nagn) = “{)P {“[k B,y + u"mxp, Bm,‘l]} dv

¥ (ag) ", — @w [B])x[k"z]}‘g-.:;)

Equations (9. 2)and (9. 3) represent the total mechani-
cal couple and the total couple due to the presence of
magnetization in the body, respectively. In absence of
these couples and, if the initial angular momentum of
the body (B) is nil, Eq. (9. 1) yields, after integration
with respect to time,

G=-r171 [ ppav, (9.4)
(B)
where the angulay momentum of the body (B) has
been defined as
Gm = f pemkl x, % du. (9.5)
(B)

Eq. (9. 4) represents the conventional Einstein-de
Haas effect for the whole body (B), while Eq. (9.1) is
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a more general equation, given in differential form,
which involves effects of other sources.
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APPENDIX A: THERMODYNAMICS OF ROTATING
SYSTEMS

Based on the Thermodynamics of rotating systems,
one can give another argument leading to formula
(2.14). Let € and €’ respectively be the density of
energy in a fixed coordinate system and in a coordi-
nate system moving with an element of matter having
the angular velocity w about a fixed axis. Classical
mechanics®7? gives the relations

€'=¢€—wl, (A1)

with

de’
l=-%
where 1 is the angular momentum. In a rotating sys-
tem, we have

b€’ = 66n —1+ow , (A2)

where the scalar 8 is the thermodynamic tempera-
ture and 7 is the entropy density. If we select

IE_“'/Fy

(A3)
w= (X a/u?)+ (ww/uiu,
it follows that
o€ = 66m — (u X 3/T p2)-op. (A4)

Note that the last term differs from zero since du is
a virtual variation. Eq. (A4) can be written as
be = 687 — (6 X p/Tp2) * p. (A5)
We call 66 the anholonomic quantity p X 6p/u2,hence
the relation (A5) reads
Se=66m+ I 168°pn. (A8)
(66 is a vector not to be confused with the tempera-

ture 6.) Integrating over the undeformed volume and
over time, we get

oW=205/fdt [ p,edv,
¢ (Bg)
= fat [ pyeendv, + [dt [ p,T-166-pdu,.
¢ (Bg) ¢ (Bg) (A7)

One must take account of the first term of the latter
relation if one introduces 7 in &.

APPENDIX B: THE PONDEROMOTIVE FORCE AND
COUPLE IN A POLARIZED AND MAGNETIZED
MEDIUM

(a) It was pointed out in Sec. 4 that we are at liberty
to choose a formula for the volume ponderomotive

force. However, once this is chosen, the correspond-
ing surface term on the boundary of the body and the
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jump term across a discontinuity surface are fixed.
In order to determine these terms, we examine, in
this appendix, the total ponderomolive eleciromag-
netic force and couple acting upon a body (B) when a
steady discontinuity surface (I') exists in (B), the
currents not being neglected. We give a derivation
for magnetostatics; that for electrostatics follows the
same line.

To start with, consider the magnetic stress tensor
1 f) given by the relation

thty = HBP — (3 B2 —BM)gh (B1)
and the Maxwell's equations for magnetostatics in
matter
VXH=c1J,

VB =0, in (B—T),

(B2)

nX[H]=c72K, [B]'n=0, n-[J]=0,

on (8B—T)and on ('), (B3)
In these equations, B,H,M,J,J, and K are the mag-
netic intensity, the magnetic field, the magnetization
per unit volume, the total volume current, the con-
duction current, and the surface current, respectively.
n is the positive oriented normal to (8B — I') or to (T")
and the familiar symbolism [ - -] represents the
jump, i.e.,[4] = Ay — A(-) " g#? is the metrictensor.
Upon using (B2) and the relations
H=B—-M, M-=p, (B4)

where p is the density of matter and p is the magneti-
zation per unit mass, we obtain the ponderomotive
force f(,,, per unit volume as

Sdw = bl = LI X B)# + pBriFY, (BS)
or, equivalently,
£y = ¢TI XH + M-V)B + ; VM2, (B6)

The corresponding ponderomotive couple per unit
volume is:

Ciem) =P X T M X B, (B7)
where p is the position vector and f, is given by

fp =f(m — 1, (B8)
with

f, = ¢c71J X B.

(b) In order to compute the total ponderomotive force,
we consider a control surface (S) enclosing the ma-
terial body (B) and very close to the boundary (0B) of
(B). Thus, we consider (9B) to be a discontinuity sur-
face in the total volume enclosed within (S). We write
Fiy = [ty mds. (89)
Upon using the generalized Green—Gauss theorem 358
when a discontinuity surface (I') exists in (B), we have

F(eim) = f

Lk, dv + tky]m,ds
s ooy Cmik (rf)[ Gm] sy

+ tikyIn, ds. B10
L Imds.  (®B10)
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From (Bl) it follows that the first term of (B10) is
nothing but the volume integral of (B5). We analyze
the second or third term in detail. The following defi-
nitions for the jump and the mean value on a surface
are used:

[A] = Ap — Aw, A =32Ayh+An). (B1D
The following identities hold:

[AB] = A[B] + [A]B, (B12)

[A2] = 24 [A]. (B13)
For a quantity B such that [B]+n = 0, we have

B'n =B-n, (B14)
From (B1), we see that

d(linagn) = [t(eiﬁi)] n,

= [HiB* — ;B2gi* + M*Bgi]n,. (B15)

We set

B=B(,) * By, B)=®B:nn, By =nX(BXn),

(B16)

Similar formulas are written for M. From the first
of Egs. (B2), we have

B(»n] =0, [B]=[By]. (B17)
Upon use of (B17), (B14) and (B13), Eq. (B15) yields
d(nagn) = B-n)[H] — (B*[B])n + [M-B]n.

Transforming the second term by use of (B4) and
using (B12) for the last term, we obtain

d(pagn) = B-n)[H] — (B+[H])n + M+[B])n

(B18)

Note that the two first terms of the last equation com-
combine to give (n X [H]) X B after the vectorial
identity

A. C. ERINGEN

(AXB)XC =(AC)B— (B*C)A.
Thus, with the first of Egs, (B3), we finally have

dgagn) = ¢ 'K X B + (M+[B])n, (B19)
Upon carrying this result into Eq. (B10), we get the
total ponderomotive force acting upon a magnetized
body (B) for the case of statics when a discontinuity
surface (I') exists in (B). It reads

F(em) = f {C-lJ XB + p(V B)’)J.}dl)
(B-T)

+ (rf){c-lx x B + (pE+[B])n}dsy

+ [ {eK x B + (ppe[B])n}ds.
(¢B-1)
The total ponderomotive torque acting upon the body
(B) under the same condition is simply given by the
integral of (B7). That is,

(B20)

Cem = (g)(p X fp + pu X B)du. (B21)

For the case of electromagnetostatics, it is shown
that, starting from the electromagnetic stress tensor

tiky = EiD® + HiBE — {1 (B2 + E2) — M+Blg#

and using the Maxwell's equations

I

VXE =0,
n X [E] =0,

VD
n-[D]

where E is the electric field, D is the electric dis-
placement, ¢ is the volume charge density and o is the
surface charge density, we would be led to adding

terms of the form f{qE + (VE) *P} dv and f{OE + (P
[E])n} ds to the first and to the second and third term

of Eq. (B20), respectively, and a term fP X E dv to
Eq. (B21) with

gin (B —T),
gon (0B —T) (T),

P=D—E.
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Variational principles of the Lippmann~Schwinger type are used to develop approximations to eigenenergies and

eigenfunctions within the wave-operator formalism, The present approach starts with exactly soluble “primary

”

eigenvalue equations to give explicit results valid beyond the limits of conventional perturbation theory. The
variational functionals are expressed in terms of resolvents of the primary Hamiltonian, and bounds to the func-
tionals are constructed also for cases where the resolvents are only partly known, Approximations to eigen-
energies and eigenfunctions are obtained in terms of quantities in the Brillouin~Wigner perturbation theory.
Connections with methods for upper and lower energy bounds are discussed, and the convergence properties of
the nonlinear Padé summation is recovered in this way. Closed formulas within the double perturbation theory

framework are presented as a logical extension.

1. INTRODUCTION

The wave operator formalism of Lowdin is a con-
venient tool for discussing several aspects of the
eigenvalue problem in quantum mechanics.! It has
been used to develop compact expressions for the
Brillouin-Wigner and the Rayleigh-Schridinger per-
turbation theory and more recently to obtain Fred-
holm type expansions for bound states.2 It has also
proved helpful in the derivation of upper and lower
bounds to eigenvalues and second-order properties,3,4
Parallel developments have occurred in scattering
theory, giving expansions and bounds for phase
shifts.5,6

In this contribution we want to emphasize the use of
variational principles of the Lippmann-Schwinger
type7? in the wave operator formalism. Although the
following procedure looks very similar to that for
scattering states, there are several new aspects
worth studying. Since this principle does not require
normalizable trial functions, it is particularly useful
in connection with intermediate normalization, and
may be applied (unlike the Ritz variational principle)
to both bound and quasibound states. Most of the
following developments refer to bound states, while
the connection between these and quasibound states
has been considered elsewhere.8

In Sec. 2 we briefly review the wave operator formal-
ism and variational principles of the Lippmann—-
Schwinger type. These principles are expressed in
terms of reduced resolvents after performing split-
ting of the Hamiltonian into a primary part H, and
H,.

Upper and lower bounds for the variation functional,
in the case when the primary reduced resolvent is
only partly known, are given in Sec. 3. Section 4
finally contains results for specific trial functions.
It deals with expansions in given basis sets and in
particular with the energies and states of the Bril-
louin-Wigner perturbation theory. This leads in a
natural way to the concepts of inner projections and
Padé approximants for perturbation sums. Connec-
tions with the theory of upper and lower bounds are
pointed out where appropriate.

Finally a formulation within the double perturbation
theory framework follows as a logical extension of the
previous analysis.

The nomenclature is for the most part that of pre-
vious work on the wave operator formalism,3®

2. THE WAVE-OPERATOR FORMALISM AND
LIPPMANN-SCHWINGER-TYPE VARIATION
PRINCIPLES

In the wave-operator formalism the solutions to the
Schrodinger equation

(H—E)W =0 @.1)
are obtained from

(e—H)Yle) = [e— f(a)]g (2.2
by finding the roots of

e =f(e) (2.3)
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Variational principles of the Lippmann~Schwinger type are used to develop approximations to eigenenergies and

eigenfunctions within the wave-operator formalism, The present approach starts with exactly soluble “primary

”

eigenvalue equations to give explicit results valid beyond the limits of conventional perturbation theory. The
variational functionals are expressed in terms of resolvents of the primary Hamiltonian, and bounds to the func-
tionals are constructed also for cases where the resolvents are only partly known, Approximations to eigen-
energies and eigenfunctions are obtained in terms of quantities in the Brillouin~Wigner perturbation theory.
Connections with methods for upper and lower energy bounds are discussed, and the convergence properties of
the nonlinear Padé summation is recovered in this way. Closed formulas within the double perturbation theory

framework are presented as a logical extension.

1. INTRODUCTION

The wave operator formalism of Lowdin is a con-
venient tool for discussing several aspects of the
eigenvalue problem in quantum mechanics.! It has
been used to develop compact expressions for the
Brillouin-Wigner and the Rayleigh-Schridinger per-
turbation theory and more recently to obtain Fred-
holm type expansions for bound states.2 It has also
proved helpful in the derivation of upper and lower
bounds to eigenvalues and second-order properties,3,4
Parallel developments have occurred in scattering
theory, giving expansions and bounds for phase
shifts.5,6

In this contribution we want to emphasize the use of
variational principles of the Lippmann-Schwinger
type7? in the wave operator formalism. Although the
following procedure looks very similar to that for
scattering states, there are several new aspects
worth studying. Since this principle does not require
normalizable trial functions, it is particularly useful
in connection with intermediate normalization, and
may be applied (unlike the Ritz variational principle)
to both bound and quasibound states. Most of the
following developments refer to bound states, while
the connection between these and quasibound states
has been considered elsewhere.8

In Sec. 2 we briefly review the wave operator formal-
ism and variational principles of the Lippmann—-
Schwinger type. These principles are expressed in
terms of reduced resolvents after performing split-
ting of the Hamiltonian into a primary part H, and
H,.

Upper and lower bounds for the variation functional,
in the case when the primary reduced resolvent is
only partly known, are given in Sec. 3. Section 4
finally contains results for specific trial functions.
It deals with expansions in given basis sets and in
particular with the energies and states of the Bril-
louin-Wigner perturbation theory. This leads in a
natural way to the concepts of inner projections and
Padé approximants for perturbation sums. Connec-
tions with the theory of upper and lower bounds are
pointed out where appropriate.

Finally a formulation within the double perturbation
theory framework follows as a logical extension of the
previous analysis.

The nomenclature is for the most part that of pre-
vious work on the wave operator formalism,3®

2. THE WAVE-OPERATOR FORMALISM AND
LIPPMANN-SCHWINGER-TYPE VARIATION
PRINCIPLES

In the wave-operator formalism the solutions to the
Schrodinger equation

(H—E)W =0 @.1)
are obtained from

(e—H)Yle) = [e— f(a)]g (2.2
by finding the roots of

e =f(e) (2.3)
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In Eqgs. (2.2) and (2. 3), ¢ is an arbitrary normalized
reference function, e is a complex energy, f (e) is
given by

(o HI[Y(e)) = (¢ |HW(e)|p), 2.4
where the wave operator is defined as

W(e) =1 + R(e)H, (2.5)

R(e) = (e— PHP)"1P, (2. 6)

and R(e) is the reduced resolvent at energy e. P is
the projection operator for the orthogonal comple-~
ment to ¢, which means that

Y(e) = Wle)y 2.7
satisfies intermediate normalization, i.e.,
(plyle)) = 1. (2.8)

Consider a general splitting of the Hamiltonian H into
H=H; +H,, 2.9)

where H, will be called the primary Hamillonian.
Introducing the auxiliary quantities

Ryle) = (e— PH,P)"'F (2.10)
. Wile) =1 + Ry(e)H,, (2.11)
Yqle) = Wyle)e (2.12)
we obtain
W(e) = (1 + RHy) Y, (e) = Y4 (e) + Ry(e)Hy¥(e), (2.13)
fle) = f1(e) + gle), (2.14)
file) =@ |H  Wi(e) o), (2.15)
gle) = (Y (e |[1 + HyR(e)H, 1Y (e)). (2.16)

In this way the formalism allows us to independently
choose a convenient reference function ¢ as well as
the primary Hamiltonian H,.8

In order to calculate g{e) we construct a functional
gy, e], which is stationary with respect to variations
of the trial function ¥’ (e) around the function yY(e).8
This is easily done by defining the functionals

Al ] =Y (e H, [y (e, (2.17)

By | = (¥ (e Hy (¥ 1 (e)), (2.18)
and

C[‘V’ e] = (¢’ (e*) |H2 e Hle(e)Hz lll/’(e» 2. 19)
It then follows that

gy, el = Aly'] + B[y’ ]~ Cly, el (2.20)

has the desired properties, i.e., if ¢/ (e} = Y(e) +
6y/(e), then

W, el = g(e) — By (e*) | Hy — HoR (e)Hy 18 (e)) .
(2.21)
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Thus y'(e) is determined by varying g, and using the
stationary value of g around ¥’ in the space of trial
functions 8’ it follows that

e = f'(e) + 0(62), (2. 22)
fr(e)=fyle) +g'(e), (2.23)
g'(e) = gy, e, (2. 24)

where
0(62) = <6d/(e*) [Hz - 2R1H2 l 6#’(6» ’ (2 25)

i.e.,a quantity of second order in &y.

Equation (2. 23) has an added significance for real
energies in the discrete spectrum. For opposite signs
of H, and R,, 6(62) is either positive or negative;
hence a solution to

e =f'(€) =FE’ (2. 26)
gives, respectively, a lower bound to the energy E ¢ if
©(62) > 0 and an upper bound if 0(52) < 0,

3. EXPRESSIONS FOR THE FUNCTIONAL

In order to use the variational principle in practical
applications, we must deal with two features in J: cal-
culation of the reduced resolvent R 1(e.) and the depen-
dence of g on e.

In Sec. 2 we developed equations where H, could be
conveniently chosen, so as to simplify the calculation
of R,(e). Here we shall obtain expressions for g that
apply even when R, is not completely known. To
prove the following relations, we make use of the
eigenvalues and eigenoperators of H, = PH,P that
satisfy

HO® =E@OL, k=12, (3.1
and .
P=2,0%. (3.2)
kz1

The expression for R, is immediately obtained from

Ry(e) = El 0fP/(e — Ef), 3.3)
k=
and g follows replacing Eq. (3. 3) in Eq. (2. 20).
Further results may be obtained in terms of upper
and lower bounds to J. Assuming that only the lowest
eigenvalues and eigenoperators of 171 are known, it is
possible to give upper and lower bounds for g, fol-
lowing Ref. 5.

Given a positive operator A4 > 0, one can write
Az |B(h|A~1|h) L], (3.4

where |h) is a column vector whose elements are the

functions k4, k,, ..., hy belonging to the space of A,
e Khla=tim),; = (r,lA-2 k). 3.5)
it follows that for B < 0 it is

B-1 < [W}¢h|B|h)~1h]|. (3. 6)

These bounds may be applied to the operator R,(e),
when e is real and e =E{D. Then B=(e—H,)"1 <0
and, from Egq. (6),
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Rl(e) < |h)¢h|e — 171 |hy~Lh| = R(l")(e) 3.7

with P|h) = |h). To obtain a lower bound, one writes
Ry(e) — Ple — E{V)"1 = — P(e — E)-LEQP
— H)e— H))™1 (3.8)
and, noticing that
A=PEQL—-H)e—H) 120 3.9
one gets, applying Eq. (4),
R, = Ple— _il))—l —(e— El(l))_l(El(l) — Hl)
x A'(ELD — =R (l)(e)
A = |k><k|(E(11> — Hl)(e— H))k)-1k|, (3.10)
using [h) = (H; — EQ [k), with P|k) = [k) and
OV k)= 0.
Replacing R, (e) in Eq. (2. 20) by R{* and RY)’ we
obtain the bounds
J9p', e] = glv', e] = gy, €], (3.11)
where
I =A +B—C®, CcO =Y ()|H,
— HyRPNe)H, [y (e)), for b = u,I. (3.12)

Choosing the function ¢’ to approximate ¥, we get,

from Egs. (2. 22)-(2. 25)

fule) +8,(e) + 0(62) = f(e) = fy(e) +g/(e) + 0(52)
(3.13)

where the subindices indicate that R, has been re-
placed by the corresponding bounds. Equation (3.13)
is in a form convenient for iteration. The iteration
limit now gives upper and lower bounds to E, within
errors of second order in 6y = ¢’ — . Further-
more, the right side of Eq. (3. 13) gives a rigorous
lower bound to f(e) if ©(62) = 0, and the left-hand side
a rigorous upper bound if 0(62) = 0.

Although the previous results were obtained for real
e = EQ), it is clear that the previous development
could be applied, with few changes, to the case where
e = EV, for any n.5

4. APPLICATIONS WITH SPECIFIC TRIAL
FUNCTIONS

Explicit expressions may be obtained for the func-
tional g and for f' only after specific choices of the
trial function ¢’ are made. These choices are dic-
tated by the nature of the problem being investigated
and would take the form of parametrized functions or
expansions in given basis sets.

We will consider here expansions of the type
Y'(e) = [&)c(e) (4.1)

which makes use of the basis'set £,,§,,* -, {,. Re-
placing Eq. (4. 1) in Eq. (2. 20)

Jle, ) = (Wy(eM [ HylE)e(e) + eT(e*KE I Hy [y (o)
- CT(e*)('E ’Hg - Hle(e)Hz IE)c(e)-

Differentiating with respect to ¢ and cT, we get

(4.2)
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cle) = (& sz - Hle(e)Hz ’§>—1<§ 'Hg N/]_(e»

4. 3)
and, replacing this in Eq. (2),
g'(e) = a(e)[C(e)]tb(e) = stcatg](c, e) 4. 4)
with
ae) = (Y1(e) |H, &), (4.5)
(e) = (E|HylY(e)) =af(e?) (4.6)
and
C(e) = (¢|H, — HyR (e)H, |E) = CT(e"), @4.n

provided C-1 exists for values of e around E’, which
we can achieve by a proper choice of £ and H,.

Due to the construction of the difference form for g,
we obtain, if |£) is complete,
1 =(pl¥(e)) =(pl&)[C() ] 1b(e),
1 = W(e)l o) =a(e)[Cle)] K& ).
We shall see later that Eg. (8) does not automatically
hold for an approximate trial function ¥’ determined

by Egs. (4.1)-(4. 3), but can be invoked as a con-
straint.

(4.8)

As an application of the previous equations we shall
develop approximants to ¥ (e) and f(e) in terms of
quantities similar to those in the Brillouin—-Wigner
perturbation theory, but quite general insofar H; will
be unspecified. We introduce the Brillouin-Wigner
type quantities

g, (e) =Yy () |Hy[Ry(H [P Iy (e)), n=0 (4.9)

®,(e) = [Ry(e)Hy "4 (o), (4. 10)
with

R(e) = Rl(e) + Rl(e)HzR(e), (4.11)
Ry (e) = Ple— PH,P)"1P, P=|— |oXol, (4.12)
and e real.

Choosing &, 1(e), i =1,2,...,N, it follows from
Eqgs. (4.1)- (4 7) that

statg(c, ¢) =g'(e) = g1(G; — Gy)~lg; (4.13)
and introducing |®) = [®,,%;,...,Py_ ;)

Y'(e) = 18)(G; — Gy)"1g, (4.14)
Here we have used the row matrices
g:z(gi,gi+1a'--,g1v+z‘—1)r i:1’2""’N+1

(4. 15)
and the square matrices

Gi= (@ &ips--rBysiny)y =12, (416)
We observe that, rewriting f;(e) = g;(e),

(&) =gole) +£1(G, — G,)1g, (4.17a)

is the [N, N] Padé approximant9 10,2 to the energy
series

fle) =gole) +g4(e) +g(e) + -+ (4. 17b)
based now upon expansion of Eq. (2. 16) in a general
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basis set given by Eq. (4.10). Secondly, we obtain for
H, = 0 and R,(e) = 0 that the error term is

0(62) = (6¥ |H, — HyR H, 16Y) = 0 (4.18)
so that
f(e) = [N, N](e). (4.19)

A simple geometric approximation is obtained for
N = 1, using |& =&, = y/;(e) which gives2

fr(e) =gole) + [£1(2)]2/]g1(e) —g 5(e)],
V' (e) = {g;(e)/[&1(e) — g ()} ¥, (o).

We see here that (¢ [{'(e)) # 1,for g5(e) #0. In order
to incorporate intermediate normalization, we write

(4. 20)
(4.21)

Y=y, + % (4. 22a)
(x|l =0

and then proceed to construct a variational principle
for yx. It follows immediately that the functional

(4. 22b)

"}C[X) e'] = (11/1(6) |H2R1H2 |X> + <X|H2R1H2 |d/1(€)>

~ (x|Hy — HyR{H, ) (4.23a)
is of the Lippman-Schwinger type and has the re-
quired stationary properties discussed in Sec. 2.
It is also easily seen that

fle) = gyle) + g4(e) + gyle) + X[x, e]. (4. 23b)

Expanding the trial function in the form yx’' = |£)c(e),
with

(¢ &) =0, we obtain

cle) = <& l Hz - H2R1H2 |§>-1<§ |H2R1H2 lll/l(e» (4.24)

and

stcatJC[c, e] = (Y,(e) | HyR  H,y | E)cle). (4. 25)
Further by choosing £, =@, fori=1,2,...,Nit
follows that

fr(e) = gy(e) +gy(e) + gye) + g(Gy — G,) g, (4.26)
and
Y (e) = Yy(e) + Ry(e)Hy¥, (o)

+ R H,|9)(G; — Gy lgs.  (4.27)
Equation (4. 26) is the (N, N + 2] Padé approximant to
the series Eq. (4. 17b), and for ©(562) = 0 one obtains

fle} = [N, N + 2](e). (4. 28)
The stationary solutions for g or X are identical to
the results obtained by L&wdinl via an inner projec-
tion of the reaction operator { = H, + HyRH,. Our
derivation emphasizes the optimum property provided
by the inner projection technique,4 which is now seen
to follow from a variational approach.

A complementary variational principle for yx is
obtained from
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Alx' 1= Wyle) | Hy 1D, (4. 292)
Bx'] = (X' |Hy |¥4(e)), (4. 29b)
Clx,el=«(xle—HIY), (4. 29¢)

and
My, e]=A +B—C. (4. 30)

Equation (4. 30) is stationary for variations of ' =
¥, + x’ around the wavefunction given by Eq. (2. 13)
and then

Stgm[x', e] = A[X’] =f(e) “'g()(e) _gl(e) — 0(62),
(4. 31a)
where

0(62) = (6x|le — Hldy (4.31b)

with x = Y(e) — lpl(e) and 0x = x' — x.
Expanding x’ = |£)c(e) with (¢ |§) = 0 the variation of
M gives

cle) =(le— HI|EUEHy |y, (e

and
sE:at‘m[c, e] = <W1(e) [Hz |§>c(€)-

A further choice §; =@, fori=1,2,...,N leads to

(4.32)
(4. 33)

fr(e) = gyle) + g (e) +83(G, — G3)1g, (4.34)
and

ll/'(e) = ll/l(e) + I¢>(G2 - Gg)—lgz

Equation (4. 34) is the [N, N + 1] Padé approximant to
the series (4.17b). Since the result in Eq. (4. 34) is
identical to that obtained from the Ritz variational
method with the basis functions ¥, ®,,..., $,, we get
an upper bound to the exact energy E = f(E) in accor-
dance with

(4. 35)

E<e=[N,N+1]e) (4. 36)

In particular, when H, > 0 and R, is negative, we have

[N,N + 2](e) = f(e) = [N, N + 1](e). (4.37)
In fact, it is straightforward to show by constructing
the appropriate trial functions that even and odd
order approximants, where by definition [N, N + j] is
even (odd) whenever 2N + j is even (odd), yield a
sequence of lower and upper bounds to f(e). The
variational principle based on the functional N [y’, e]
corresponds to the Hulthen-Kohn12,13 principle often
used in scattering theory.

Returning to Eq. (4), particular applications require
calculation of R;(e). This is simplified when e is
real via the bounds previously obtained, which do not
involve the solution of the eigenvalue problem for H,.
Introducing R{Y and RY from Sec.3, we can write the
following bounds to C(e),

C(u)(e) = <§ |H2 IE) + <£ IHZ |h><h|e - 171 lh>_1<h]H2 |£>7
(4. 38)

CW(e) = (&1 H,y |&) + (e — EV)"1[<E| H, PH, |£)
- (E |H2(E(_P - Hl)A'(_E_il) - El) |£>], (4- 39)

and we obtain
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In this way the calculation of upper and lower bounds
to E, within ©(52) may be carried out simply using the
inverse of the N X N matrices in Eqs. (4. 38) and

(4. 39).

Finally a useful application of the general results dis-
cussed in previous sections is obtained when #, re-
presents a “physical ” perturbation pW, such as for
instance given by an electromagnetic field. The
standard approach in this connection has been to con-
sider an “internal” splitting of H, into H, and the
internal perturbation V= H, —H, and to choose ¢=
089 to satisfy

< g'(e) = a(efCW}Ib(e). (4. 40)

H,9{® = E{® . (4. 41)
In this manner the corrections to the energy and the
wavefunction are systematically given within the
double perturbation theory framework as developed
by Dalgarno e/ al.14 Variational methods to calculate
first- and second-order properties have been derived
by Schwarz15 and Delves.1€ In order to emphasize
the connections between the two different formulations,
we will consider the perturbations ¥ and uW separ-
ately. As a basis for the discussion, we make a
Raleigh—Schrédinger expansion of Eq. (4. 17b) in

)

@ =
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powers of H, to obtain, indicating with upper indices
the orders in u,

E :f(E) — E(O) + #6(1) + N2€(2) + u3€(3) + -
and

(4. 42)

Y=Y (EQ) + pp@ 4 p2y@ 4 .- (4. 43)

by equating equal powers of u, using Eq. (4. 11) and

R (e) = R{(E®) + R{(EO)R,(e)(E@ — o). (4.44)

It then follows that the lower-order energy terms, in
the strength u of the physical perturbation, are

E® =g (E®) = (p|H, + HR,(EO)H, |0

= E§O + (@@ |V + VR (EO)V|g{® (4. 45a)

so that E (© is the exact eigenenergy for the internal
Hamiltonian #, and

WL (EO) Wy, (EO)
W1 (EO) [y, EO)
W1 (EQ) |(W — eD)R, (EO)(W — D) |, (EO))
W1 B0y, ED))

6(1) —

s (4. 45b)

@) =

and (4. 45¢)

<¢1(E(O)) (W — €(1))R1(E(0))(W — e(l))Rl(E(O))(W — ) [4,1(]5(0)))

W1 (EO) [y, (E@)

— @

(4. 45d)

(W4 (EO) [(W — DR (BO) + Ry (EO)W — D) | ¢ (EO))

(W (EO) [Y (EO)

while the corresponding perturbed states are

lpl(E(O)) — (po(o) + RIE(O)) V(po(o)’ (4. 46)

YL = R, (EOYW — D)y, (EO), (4. 47)

where ¥, (E©) is the exact eigenstate for H;,and so
on.

From the definition of R, (E®) we get
RI(E(O)) — RO(E(O)) + RO(E(O)) VRI(E(O))

with R, (E©) = P(E@ — g, )-1P. By application of the
variational principles discussed earlier, we can write

(4. 48)

E©® =1im[N,N + 1|(E©), (4. 49a)
where N
[N,N + 1](E®) = Ef? + {0 + (O (B

— EQ)-1eQ (4. 49D)

with the lower indices referring to order in V, and

v (ED) = 9 + lim X(ggw (4. 50a)
where

X9 = 1@ EDY - ED)1L0, (4. 500)

|

(0) () 0)
O 1w XD 1) + e W) + Xeaweny | (W —

r

In Egs. (4. 49) and (4. 50) we have used the well-known
Brillouin-Wigner quantities for the internal problem

(@1 Ve,
(0) = (R, (EO) V' )i%(o),

€0 = (4.51)

(4. 52)

to construct the matrix expressions occurringinEqs.
(49) and (50), i.e.,

lp©@) = [0, @0, ..., ¢, (4.53)
(€O = (9, 6Q, ..., €®;y), (4.54)
E© = (9, €9,...,60,) (4. 55)

We have chosen the [N, N + 1] approximant as an
example, but we could equally well have treated the
primary problem by other types of Padé approximants,
which we have previously introduced. First-order
properties of the system with Hamiltonian H; may
now be obtained from the energy term linear in p:

(D

& = limeH 1 (4. 56a)
00

where

X121 (4. 56b)

D o
E([N.mn O w1 (O)>+

107 {0)
1+¢ ul )

XN N+1] P XN+ 1]
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and similarly for hi )er-order properties. Due to

the construction of ¢ [lN n+1) from Egs. (4. 49b), (4. 50b)
and (4. 56b) a solution for finite N fulfills the require-

ments of Delves principle.16

5. DISCUSSION

Variational principles of the Lippmann~Schwinger
type appear convenient in connection with the wave-
operator formalism. In addition to the fact that they
apply to quasibound states,8 they also provide an
alternative formulation for bound state problems
previously discussed in terms of operator inequalities
and inner projections.1,3,4

An apparent disadvantage of these variational forms,
namely that they include reduced resolvents, may be
circumvented by introducing a primary Hamiltonian
H, that may be chosen to simplify the calculation of
R;. Even when the nature of the physical problem
determines H,, it is still possible to give upper and
lower bounds to R, and hence to the variational func-
tional as shown in Sec. 4.

A variation-perturbation treatment using the quanti-

ties of Brillouin-Winger perturbation theory leads to
useful expressions in terms of Padé approximants.1?
They contain previous results using inner projections
and continued fraction expansions.?: 1! These appear in
our treatment in a simple and natural way.

D. A. MICHA

By considering the sign of the second-order error in
the variational principle, it is possible to give upper
and lower bounds to the bracketing function f(e), for
real e, and therefore bounds to the energy eigenvalues
The bounding properties of the [N, N] and [N,N — 1]
Padé approximants have been recovered in this way.
The practical advantage of using trial wavefunctions
that lead to Padé approximants have been studied
elsewhere,2,18

The present approach is further developed in con-
nection with double perturbation theory. A formula-
tion based on a nonlinear Padé summation of the
Brillouin-Wigner perturbation series for the internal
Hamiltonian combined with a linear Raleigh~Schro-
dinger in the physical (or external) perturbation is
presented as an alternative method. Application with-
in the configuration-interaction framework by means
of a reduced partitioning procedure appear promising
and are being further studied.
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The two-electron integrals which arise in electron-atomic ion scattering theory are expressed as a finite sum
of terms each involving a generalized hypergeometric function, We give what is believed to be the first finite
expansion known for the exchange integral. The many well-known recursive and transformation features of the
hypergeometric functions are then utilized to conveniently and accurately evaluate the integrals with few re-

strictions on the values of the parameters.

I. INTRODUCTION

We have recently considered the (n£2)1S auto-ioniz-
ing states of helium! ™3 using a generalization of
Fano's4 configuration interaction theory. This
approach reduces the problem to one of evaluating
matrix elements involving the orbitals of the chosen
basis set. These matrix elements require evaluation
of a number of basic types of integrals involving a
function which will represent the unbound electron, in
our case the Coulomb-Bessel functions. Because of
an increased interest in many-particle variational
methods in electron-atom scattering theory,5 where
these integrals arise, we wish to describe our
methods for evaluating these integrals.

The matrix elements we shall consider have recently
been treated by Lyons and Nesbet6 and by Bottcher.?
Although Lyons and Nesbet particularly treated the
matrix elements for the electron-neutral atom case
involving the spherical-Bessel functions, their treat-
ment can easily be generalized for the coulomb~
bessel functions arising in electron-ion scattering.
The reduction of the energy and overlap matrix
elements to seven basic types of integrals has been
given in detail by Lyons and Nesbet. We wish only

to describe our method for evaluating these basic
integrals. Hence we shall not present the reduction
of the matrix elements here. Our notation follows
Lyons and Nesbet. Frequently we shall for the pur-
poses of brevity refer to formulas from a reference
given by the United States National Bureau of Stand-
ards.8 This will be indicated by the notation HMF
followed by the equation of the handbook.

The seven basic types of integrals are®
G\, pln, k,a) = focc Fy(n, kr)re-reardy, (1)
H\p,pln, k0’ k7, @)
= [.7 Fa(n, k)E, G, krryre-roweserdy, (2)

I pln, k', k) = [ Faln, kr) E (0", kr)ye-Nudr,
3)

B(p,qla,B) = fom r‘;e_“'lf,:o rye Padr dr,, (1)
W, p,qin, k0, B)
= J5° Filn, krl)rf_xe'wlf: rae Prdridr,,  (5)
Vw0, qin, k', B, )
= 7 Fany b )F (o RO
X L jo rge “edridr,, (6)

X(ky wpyaln, k,y' k', a,B)
= fooo F,(n, krl)rf—)‘e"’"n

xj: F (', by, )re Pe 2 dridr,, )

where for completeness and later reference we have
added the elementary integral B(p, ¢|a, 8), which
does not contain any continuum functions, -

The radial wavefunction in an attractive coulomb
field of charge Z takes the form (HMF 14. 1, 3)

Fy(n, br) = Ci(n)e 7 (2kr) X Fy (A + 1 — 1, 21 + 2, 2ik),

(8)
where 7 =— iZ/k. When 5 = 0 we have? (HMF
14, 6. 4)
Lim F\(n, kr) = jy(kr), (9)

indicating we can also treat the integrals involving
the spherical-Bessel functions for the electron-
neutral atom case as considered by Lyons and
Nesbet.6 We will also have need of the integral re-
presentation (HMF 13.2.1)

1
1F4la,¢c,2) =B(a,c —a)71 fo G, (t)e®dt, (10)

of the confluent hypergeometric function which when
inserted in Eq. (8) gives

En,kr) = C \(nyr*e*"B(A + 1 —np, 2 + 1 + )1

1 )
X 7 Gria-nznsa(leirtat, (1)
where

Ciln) =+ % %M(Zk)*e”ﬂlz = (2k)>‘C§\(72)1,2)

Gac(t) — ta—l(]_ — t)c—a-l’ (13)

and B(a, b) and I'(a) are the beta and gamma func-
tions, respectively.®

2. THE INTEGRAL G

The integral G, Eq. (1), upon introducing Eq. (11)
becomes

Ci(m
Bh+1—mr+1+1n)

1 . .
X Jy Grernanea® [ rhe-laie ity ar. (14)

G(A;p lﬂ, k; Ot) =

Performing the integration over » we obtain
Catn) p!
GO pIm, &, @) TBMA+1—nx+1+n) (o +ik)rl

1 2k “p-1
x J Gx*l_n,%z(t)(l—a—bk-t) dt, (15)

which reduces to
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G(Ahb \Tl, k) a) = Ck(n)i—

(o + ik)?+1
x zFl(p + LA+ 1—7 2% +2,

2ik
) s

o

upon identifying the Gaussian hypergeometric func-
tion (HMF 15. 1, 1) by its integral representation
(HMF 15.3.1)

o Fi{a,b,c,2) = Bla, ¢ — u)’lfol G e ()1 — zt)70at .(17)
Equation (16), along with the many recursion rela-
tions which exist relating the contiguous , F; func-
tions,® (HMF 15. 2, 10-15. 2. 27) has been used by
Bottcher and Lyons and Nesbet to derive recursion
relations for G which allow their evaluation. Earlier
techniques!0~12 involved evaluating ,F, directly

by summation or by some other related approach.

We use the procedure of Callan ef al.13

Using one of the Gauss recursion relations for the
contiguous functions (HMF 15. 2. 11),
(1 —2) yFy(a,1+1,b,2)
+ [(a_ [)(1 - Z) + (b —I— a)] zFl(a; I,b,Z)
+ (I —=0b) ,Fy(a, I —1,b,2)

=0, +BF +yF =0, (18)
and the relations

oFi(a,0,0,2) =1 (19)
and

2Fyla, b, b, z)=(1-—2)9, (20)

which can be obtained directly from the Gauss series
(HMF 15. 1, 1), we must solve an nth order system of
linear equations. In matrix notation this consists of
solving the equation |A||F = |B, where |A|is a non-
singular N X N matrix consisting of the o, 8,,and 4,
coefficients [Eq. (18)] and | F is a column vector con-
taining the needed N , F, functions, only N — 2 of
them really unknown. |B is a column vector consist-
ing of zero except for two elements which are set
equal to one and (1 — z) ¢, respectively, correspond-
ing to the two known , F; functions in the |F vector
[Egs. (19) and (20)] and also corresponding to the two
additional rows in |A|, which each have an appro-
priate element set equal to one. This method is parti-
cularly adaptable to a computer because of the effici-
ent computer codes now available to handle matrix
algebra, and it minimizes any truncation error arising
in summation techniques.

3. THE INTEGRALS H AND/
If we proceed as in Sec. II and insert Eq. (11) into Eq.
(2) for H, and integrate over 7, we obtain
H, ppln, kyn', R, a)
a C\C, (P! (e +ik + k) P71
TBOA+1l—mA+l+mBR+l—n,p+1+7)

1 .1
x fo fo GA«l—n.zA+2(t)Gu+1*n'-2n+2(s)

2ikt 2ik's “p-1
x<1_a+ik+ik’_a+ik+ik’> ‘”di-m
Identifying the double integral as the integral repre-
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sentation of the F, hypergeometric function,?,14
F,(a,b,b’,¢c,c’,x,9) = B(b,c —~ b)"1B(b',c’ — b')71
1,1
X Jo Jy Goe®Gye () — tx — sy)edt ds,  (22)

yields15

_ GG, (n)p!

, T (@ + ik + k)21

><F2<1>+1,>~+1—n,u+1—n’,2>\+2,2p+2,
2ik 2k’ )

a+ik+R)Y’a+ik+E))"

HOG ppln, kyn', Ry a)

(23)

QOur method of evaluation of the F, function is given
in Sec.IV.

As o goes to zero H becomes I,
Iu,pln, k' k) = linz)H(A, ol k' k', a). (24)
o=

The evaluation of 7 has been considered extensively
by Alder et al., 16 Biedenharn ef al.17 and others10,18
and hence will not be considered in detail here. We
use their method which involves the well-known ana-
lytical continuation of the F, function in Eq. (23)
yielding an F; function® and a polynomial. The F,
function for reasonably similar values of 2 and &’
can be evaluated directly. For k = k2’ when this pro-
cedure breaks down, we use the special case for-
mulas of Reynolds ef a/.18 and Swamy ef al.19 when
applicable. A formula for the general case when % =
k' to our knowledge has not been given.18,19 When
the formulas of Reynolds are not applicable, a pro-
cedure of evaluating the integrals at ¥ = %2’ + € and
averaging the two results was found to be adequate.
This procedure was also used for the H, V,and X
integrals when & = &’.

4. THE INTEGRALS B, V, W, X

Insertion of Eq. (11) for the continuum function into
Egs. (5), (6), and (7) and reversing the order of inte-
gration gives

Cx(n)
B +1—nx+1+7)
1
X J Grgnan2 OB(By ql(@ + i — zz‘kz),mdt.(zs)

W()‘uby 4'77, k’ a, 3) =

VO, w0, q1m, k0, B @)
C\(n)C, (')

:B()\+1——17,7\+1+’I))B([J.+1—T)’,M+1+’r)')

1 1
X ‘[0 j(‘) G)\"l'T],2)\*2(t)G“+1fnl,2“+2(s)
X B(p, qli(k + k' — 2kt — 2k's), a)ds dt ~ (26)

and

X, p, P59 10, kyn', k0, B)
_ C\(n)C,(n")
TBA+1l—mA+14nB+l—n,u+1+7)

1,1
X fo fo Grir-non2 ()G 10, 2,02(8)

X B(p,qla + i(k— 2kt), 8 + i(k' — 2k's))ds di
(27

relating W, V,and X to the integral B which contains
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no continuum functions. We can integrate B by
elementary means giving
q

B(p,qla,p) = 22 Culpr a2, p), (28)
where to reduce the notation we have introduced
v~g-1 191
C,(prala,p) = L2t 1)lgL (29)

(@ + g)prv<lpt

Substituting Eq. (28) into Egs. (25), (26), and (27) and
identifying the remaining integrals over ¢ and/or s
as the integral representations of ,F,, Eq. (17), F,,
Eq. (22),and S,
Sla, a’,b,b’c, ¢’y %, 9, 2)
=Bb,c—b)"BB',c'—b)1

S GoolBGe, ()L — 28)e

X(1 — xt — ys)edtds, (30)

respectively, we obtain the closed finite sum of hyper-
geometric functions

q
CA("?)Z:>OCU(P9‘I|(Q + ik), B)

XzFl(p+V+1,7\+1—n,27\+2

W(MP,CIM, k’a’B) =

2k )
‘a+p+ik)’
(31)
VX, u, b, qln, k', R, )

q N
= Gy, (1" Z?)Cl,(p,qli(k + k), a)
v=
xF2<p +v+La+1l—nu+l—1n,20+2

2ik 2ik’ )

2“+2’E + ik + kY (o + ik + i) )’

(32)

and
X, p,05q1m, 8, ', Ky @, B)
q
= OGN L Culp, qla + ik, B + ik)

xS(;b+ 1+ u,q+1—v,)\+1——n,u+1—n’,
2ik (33)
R Ry 1

2ik! 21k’
a+p+ik+k)48+ik

for each integral.

A comparison of the definition of S above with the F,
function, Eq. (22), reveals the presence of an addi-
tional (1 — zs) @ factor in S. This factor arises from
the integration over r; which necessarily contains
factors from one of the continuum orbitals. This was
avoided in W and V by integrating over the discrete
orbitals first. Its presence bars the identification of
S as any of Appel's functions even though it can be
defined by a somewhat similar triple series,

Sa,a’,b,b’, ¢, ¢’ %,9, 2)
o0 o a)‘a

_ 5 5 5 Hushdly

A=0 u=0 v=0 C,C{, Alulv!

u+ry

xuy vz A , (34)

where a, is Pochhammer's symbol for I'(a + A)/I(a)8
More revealing of the nature of this function is its
series representation in terms of the F, functions,

S(a,a’,b,b',c,c’yx,y,2)

= i ‘cl‘ih); z* Fola,b,b’ + x,c,c’ + A, x,9), (35)
in terms of the F; functions, 9,14
S(,a’,b,b’,c,c’, x,y, 2)
= i axbk x" F,(b',a’ya +r, ¢’y 2,y), (36)

or in terms of the Gauss hypergeometric functions
o F, (HMF 15.1.1),

Sla,a’,b,b’,c, ¢’y %,y,2)
o aa!by

__E E u Aty 2ty Y
A0 4=0 S tul”
In general, none of these simple series representa-
tions are finite. A finite series representation of the
S function can be obtained, however, for the range of
values of the parameters desired in Eq. (33).

oFila + \,b,c,x). (37)

Let us substitute

(1 — tx— sy)@

= 1= s)el—gZs0e (8)

into the integral expression for S, Eq. (30). Inte-
gration over “#” using Eq. (17) gives
S(a! a,’ b’bl’ c’ c,’ x’y’ Z)
= Blc',c'— b’)1
1 - -
X Jy Gooks)L ~ys)e(t — zsye

x 2F1<a,b,c - )ds (39)

We then utilize the well~known analytical continua-
tion of the , F, series (HMF 15. 3. 7), which can be
written in the form

2F;(a,b,c,2)

T'(c)T®h —a) "
() ) N

xoFil@a,a +1—c,a+1—0b,1/2)

o

XoFy(l~a,c—a,b+1—aq,1/z2), (40)
when used along with one of the , F, transformations
(HMF 15. 3. 3). Substitution into Eq. (39) along with
the series expression for , F, (HMF 15. 1. 1) yields
the result
S(u,a’,b,b’,¢c,¢’, x%,y,2) =

_ (= 1D)eT(T® — a) 2 axl@a+1l—c)y
Te—aT®) H@+i=pm”
1
XB@®', ¢ ~b ')-1fo Gy ()1 — yS)M1 — zs)@ds
(— )¢~ C(c)T(a — b) E_O‘_, (1—a)y(c—a),
C(c — b)T(a) o B+ 1—a) 2l
1
x x27¢"M1 — x)e e b B, ¢’ — b')‘lfo Gy /(S)

x (1 —ys)yarbsr(l — z5)@ (1 -1 sy‘“'bds,
(41)
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Consider now the integral over s in the second sum-
mation. Inserting the transformation

s = L (42)
=2 F iz

gives
1
(1- Z)c+c/+/\—a'-2a-b/fo e ()

/ y— 2z -a+b+A V+ax—2z c-a-b
X(l‘ﬁ—z) <l_t(l—z 1—x>

X (1 — z2(1 — ¢))2e-c-cr-rargy, (43)

The exponent of (1 — 2(1 — 1)), 2a—¢c—c¢’'— X + a’
will now always be a positive integer for the S func-
tions needed in Eq. (33) allowing us to expand the

(1 — z(1 — ¢#)) factor as a polynomial in z(1 — ¢) giving

2a-c-cr-A+qr
aec a(h+c+c’~2a~a’)].

(1 — g)er+e-2a-br+rhar > _
i=0 J!
1 —a+b+A
y—2=2
X fo Gyyerej (8) <1 —ty= Z)
— -a-b
(1 e =) )

The remaining integral in Eq. (44) and the first inte-
gral in Eq. (41) are representable by an F; function,?

Fl(a:b,b,7 ¢, xyy)
1
= Ba,c — a)’lf0 G, (1 — tx)°(1 — ty)bdt,
Real (@) > 0, Real (c— a) > 0. (45)
The final result for S is' given by

S(a) al’ b’ b/, C, C” x,y7 Z)
T(ATP —a) » ayla+1—c)) .
=CV et & G T
e T{c)T(a —b)

T(c — )T {a)

a-c—k(l _ x)c—a-b

X Fl(b’aala— )‘;0,1273)) + (_' l)a

2 (1—a)\(c—a),
2 s e

rco (b1 —ahr!
X (1 —_ Z)c+cl+}\—ar—2a»br

ar2a-c=cr-A

x 4

. ’
70 7l

XFl(b’,a—b——)\,b+a—c,c'+j,
Z—Yy Yy +zx—2z
z—l’il—Z)(l—i))' (46)

In the limit of z approaching zero,

]éi—% S(a: a',b,b’y¢c,c,x,y, Z) = Fz(a, b, b e,y x:y()é

S becomes F, giving an analogous expression for F,,

Fz(a) b, b’ ¢, ¢’y %,9)

3 (— 1)*T(c)T'(b—a) = a)(a+1— )

e = AT ®) PO CESEXINYEA
x gFy(b',= A, ) + (— 1e-eD(ATe D)
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z2J -

(c"—=b";(c +c’ +>\—a’——2a)]-zj

o (b +1—a)r!
X F0'ya—b—2b+a—cc,y,y/(1—x)
(48)

xa-c-)\(l — x)ca-b

It should be noted that if both summations over x
were infinite the result would be useless for the
purpose here intended;but in this work, a, ¢, and ¢’
are always integers in Egs. (46) and (48). Con-
sequently, in the first series either a + 1 — cis a
negative integer reducing the sum to ¢ — a terms, or
¢ — a is a negative integer or zero and I'(c — a) is
infinite. In the latter case the entire term is zero.
The analogous situation follows for the second series
involving 1 — a and I'(a). Hence S and the F, func-
tions in the integrals H, I, and V can be expressed as
a finite sum of ,F, and F, functions. As mentioned
earlier we use the method of Alder!® and Bieden-
harn,17 however, to evaluate the F, functions in the
integral I

We have thus expressed all of the basic integrals in
closed form as a finite sum of terms, the terms in-
volving the , F, functions for the integrals G and W,
F, (or ,F, and Fy) in [, F; in X, and ,F, and F; in
H and V. The procedure for evaluating the ,F,
functions has been described in Sec. II. The pro-
cedure for evaluating the F, functions is described
in the following section.

5. EVALUATION OF THE FUNCTIONS F,

The advantage of reducing all integrals to finite
series of F, functions becomes evident when examin-
ing the rather large number of contiguous recursion
relations obtainable for these functions. The situa-
tion is especially favourable because all of the re-
quired F, functions can be reduced to the form
Fi(a,n, b, m, x,y), where n and m are integers. The
F; functions appearing in F,, Eq. (48), and those
appearing in S, Eq. (46), will have this form upon in-
sertion of Eq. (A3). When #n is zero, F; reduces to a
hypergeometric function,

Fl(a’ 0,B’, m, x:y) =2F1(a,3’, m,y) (49)

The necessary ,F, functions, ,F,(a,8’ + min, m,y)
to ,F;(a, 8’ + max, m,y), can be evaluated simul-
taneously by the matrix method, Sec. II, except that
the two end functions above must now be obtained by
evaluating the definitive series (HMF 15.1,1). (Since
B’ is complex, no single analytical expressions are
known for any of the ,F; functions needed here.)
Having obtained a vector A of F; functions such that
a; = Fy(@,0,8" + j— 1,m, x,y), one can use the
appropriate recursion relations between the conti-
guous functions F;(q, 7,8’ + j, m, x,y) and F (o, + 1,
B’ +j*1,m,x,y) to extend the number of known
functions to a two-dimensional array, a;; = F,(a, ¢ —
196' + _7'— 1, mxx;y)-

The necessary recursion relations can be derived
from those available in the literature. Appel and
Kampé de Férietl4 give a number of contiguous re-
cursion relations for the F; functions. Those applic-
able as parent relations for the expressions needed
are

aF (@ + 1) — BF; (8 + 1) — B'F, (8" + 1)
=(a—B—B)F, (50)
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aFl(a +1):(y—1)F1('y—1)+(a +1——-y)F1, (51)
('y— a) xFl('y + 1) = 'yFl(B — 1) + 'y(x— l)Fl, (52)
(y — a)yFily + 1) = yF (8" — 1) + y(y — 1) Fy, (53)

where the notation has been suppressed such that
Fi(a +1,8,8",y,%,%) = Fy(a + 1). Eliminating
Fl(a + 1) between Egs. (50) and (51), and substitution
of y =y + 1,gives

(y—B—BIFly +1) +BF;(B+1,y +1)
+B’F1(B' +1,'y+1)——'yF1=0. (54)

Fi(y + 1) can now be eliminated using Eq. (52). Sub-
stltutmg 8 = B + 1 into Eq. (52) allows for the elimin-
ation of F;(8 + 1, + 1), and substituting 8’ =8’ +1
into Eq. (53) allows for the elimination of F; (8’ + 1,
v + 1). The final result,

—L————(_B—B)F(ﬁ—l)+6< >F(B’+1)

+B<x; 1>F1(B +1)+[(a—-—B—B’)+%

xF (B +1)+A; F{(B+1)+A, Fq, (55)

involves only the contiguous 3 and 8’ functions, and
provides a recursion equation for extending the known
functions from the vector to the two-dimensional
array.

A second relation can be derived by eliminating
Fi(y + 1) between Egs. (52) and (53):

—x)F, +xF, (B’ = 1)—yF;(B—1)=0
=B, F; + B, Fy(8’—1) + B3 F;(8—1). (56)

In principle only one recursion relation is necessary.
However, round-off error tends to accumulate, and
the rate of this accumulation depends on the recur-
sion relation involved. 1t is desirable then to have
several contiguous relations utilizing that one which
minimizes round-off error. From Egs. (55) and (56),
several others can be obtained by eliminating un-
wanted terms. We obtain the following additional
equations:
BjA F(B—1)

+ (BgA; — A,B,)Fy(B + 1)

+ By AjF, —A,B F{(B+1,8 +1) =0, (57)
BJAF(B—1) + BjAF, (B + 1)
+ (B1A, — A,By)Fy — A,B F (B — 1,8 +1) (= 0),
58

— A B,F (8" — 1) + B4A,F;(8" + 1) + B;AzF, (8 + 1)

+ (ByAy — AB)F; =0, (59)
— A B3F(B'— 1) + (ByB3A, — B3AF (B’ + 1)
+ B,(B;zA, — A{B,)F;
—B3A B Fi(B + 1,8 +1) =0, (60)

— B1AB,F (B — 1) + B1B3AF (B’ + 1)

+(B1(B3A, — B1jA|) — B3A3)F;
— B,AB,F,(B + 1,8 —1) =0. (61)

We need now to expand the two-dimensional array to
three dimensions to obtain the F; functions of dif-
ferent y required in S, Eq. (46). To this end we must
derive some relations involving contiguous functions
in y. Equations (52) and (53) are already of this type
and are applicable. The elimination of F; between
these two relations yields the equation

(Y;"><xi1 ~52 1>F1(7+1)_<xi—1>F1(3—1)
+ <y11>F1(3

which can also be utilized. Equation (54), applicable
as it is written, leads to a more useful result if we
perform in it the same operations we utilized to re-
duce Eq. (54) to Eq. (55) omitting the elimination of
F;{y +1). The result is

—B("; 1> Fy(g +1)— ﬁ'<y—;—1—>F1(B' +1)
+(£22) (6 + 8 = DFLGy + 1)

- a=t-B)r -0

X

'—1)=0, (62)

=C,F;(B+1)+ CyF(B +1)
+ C3Fy(y + 1) + C4F,. (63)

Eliminating F, (8’ + 1) between Egs. (63) and (59), we
obtain another useful relation,

(B3A,Cy — CoBoAR)F (B + 1) + C3BaA,Fyly + 1)
+(B3A,C4 — Cy(B3A, — AB)F,
+A,C,B,F (8 —1) = 0. (64)

Substitution of y = y + 1 in Eq. (55) and elimination
of F{(B’ + 1,y + 1) between the result and Eq. (54),
and likewise substitution of y =4 + 1 in Eq. (59), and
elimination of F;(8 + 1,y + 1) with Eq. (54) lead to
two additional contiguous relations which we can
utilize.

Our procedure can now best be described graphically
by Figs. 1 and 2. Initially, one calculates a column
vector of Fl(oz, 0,8’ +4,v,x,y) functions using the
o, matrix method of Sec.II. It is then necessary to
calculate one F; function by truncating an infinite
series, since noné of the recursion relations will re-
late the contiguous function Fy(c, 0,8’ +7j,y,%,y)
and F,(a, 1,8 + §,v,x,5). [One cannot relate a
transcendental function in x to a linear combination
of rational functions in x.6 Analysis of the applicable
recursion relations will also reveal that the co-
efficient of Fy(a, 1,8’ +4,y,x,v) is always zero.]
We describe in an appendix our method of reducing
the double infinite series of Eq. (Al) to a single
series with optimized convergence properties.
Having calculated F,(a, 1,8’ + j, v, %, y), we proceed
to calculate the entire two-dimensional array always
using the recursion relation introducing the least
round-off error. The optimum recursion relation is
taken as that one with the smallest subtractive error
as determined from the relative magnitude of the
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resultant F; function and the 2 or 3 terms compris-
ing the recursion relation. When the accumulation of
round-off error becomes intolerable as determined
by periodic comparisons of the F, functions cal-
culated by the recursive and direct summation tech-
nique (see Appendix), the calculation is renormalized.
This requires the evaluation of the next two rows,
Fig. 1, by the optimized single series technique, and
thereby continuing the recursive technique.

The calculation of the F, function, Eq. (48), uses F,
functions at only one value of y requiring only the .
planar procedure. However the S integral, Eq. (46),
requires a three-dimensional array. The recursive
technique is now continued upward in v, Fig. 2, utiliz-
ing the nine relations involving the contiguous func-
tions in . When round-off error is detected, the

L& 1 & | & 1 & [ o]
-n - 3| CONTINUE REGURSION RELATIONS
-n-2 |t T 1 ]
i DIRECT SERJES SUMMATION —
-n-
l 1 T T >
-n| | DETECT ROUND-OFF ERROR
l T 1 T
_2
-2 l I
R cur[zsuiN R;LATIIONS >
-1
Wit oPSS| ,F, MATRIX PROCEDURE DSS|
1pss |
RECURSION RELATIONS >
2 l | —
? ) Il 1 | ] Il | Il | ___>
LI T T 1 T T T T
n DETECT ROUND-OFF ERROR
g——e
n+l LT 1] ]
——DIRECT SERJES SUMMATION —
nt 2 ‘!l' l Jf T T IL h—
n+3| CONTINUE RECURSION RELATIONS
1 | I [ -
T T Iy
01 2 3 4 5 6 7 8 n

e

]
FIG.1 F,(a,i, 8 +Jj,7,%,») calculation. Expansion to two~dimen-
sional array. DDS indicates series summation.

T

—+—RECURS |ON
RELATIONS

——PLANAR PROCEDURE

DETECT

ROUND- OFF

( ——RECURS ION
RELATIONS

w77
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PROCEDURE

"j“

FIG.2 F(a,i,B’ +j,y +#k,x,y) calculation. Expansion to
three-dimensional array.
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process is renormalized by calculating another
planar array of functions exactly as the initial hori-
zontal array was obtained.

The rate of accumulation of round-off error, in addi-
tion to the choice of recursion relation, can be influ-
enced by the direction in which the recursion rela-
tions are applied. But which direction is optimal is
not immediately apparent. Both the magnitude and
the sign of x and y, and the remaining parameters
must be considered when determining the optimum
direction. An example of such considerations is given
by Lyons and Nesbet® when working with the G inte-
grals involving the , F,; functions. Such considera-
tions become exceedingly complex when working with
the F, functions consisting of several more variables.
To avoid the computer programming difficulties
which result from such considerations, we choose to
run consistently in the same direction and to re-
normalize when necessary. The availability of the
Fyi(e, 0,8’ + j,v,x,y) functions as starting points
influences our decision to run the recursion relations
as indicated in Figs. 1 and 2.

Calculations reveal that the recursive technique
works very well when x’ and ¥’ are significantly dif-
ferent from each other and different from an absolute
value of unity. When this is true a three-dimensional
array, containing up to 1000 functions, can be obtained
to seven and eight significant figures without re-
normalizing. On the other hand for less satisfactory
values of x’ and y’, instances occur when renormaliz-
ation is necessary at every other row in the hori-
zontal arrays and likewise at every other plane when
increasing y. Even in this case, however, only half of
the functions are being calculated by the direct series
summation, a significant saving in time and effort.

A second point of interest is whether more than one
contiguous relation is actually beneficial, Calcula-
tions indicate that this is indeed necessary to reduce
the round-off error to within tolerable levels. It was
found that up to two and three significant figures
could be lost due to subtractive error by one recur-
sive equation while another equation would introduce
little or no round-off. For any one value of x’ and y’,
it is evident that no one equation is highly preferable
over the rest,but rather two or three are equally
satisfactory. The three-dimensional matrix is then
built up alternating among these three relations.

6. DISCUSSION

A most important feature of the methods outlined in
this paper is the single method of evaluation for all
the six basic integrals. All of the integrals are re-
duced to a finite number of similar terms each in-
volving a generalized hypergeometric function. One
needs only to program routines for efficiently evalu-
ating the ,F; and F, functions and the integrals can
be easily evaluated. Although Lyons and Nesbet have
not described their procedure for evaluating the X
integrals, 6 they indicate it involves techniques com-
pletely different from those of the remaining inte-
grals. Bottcher's? method requires a numerical inte-
gration for X [given the symbol H¥ (n,n', k, k', )
in his paper] as opposed to a recursive technique for
some of the others.

We have completed our calculations on the (n£2)1S
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TABLE 1. Integration parameters of the continuum components and estimated significant figures retained in the evaluation of the H , .

integrals.
nikl Threshold (3. Buax Significant figures in H,,,,,,,®

(au) (au) (au) 1sks 2sks 2pkp 3sks 3pkp 3dkd
1sks — 2.00 2. 50 3.00 12(8) 10(6) 8(4)
2sks — .500 2.48 2.44 8(4) 8(3) 8(2) 7(2) 6(2)
2pkp — .500 1.70 2,10 8(3) 7(2) 6(2) 5(2)
3sks — .222 . 320 1.04 5(2) 6(2) 5(2)
3pkp — .222 .315 1.04 4(2) 5(2)
3dkd — .222 . 312 1.03 4(2)

a €= k2/2m2

b The number of significant figures as estimated from the hermiticity test, the ratio of real and imaginary parts of H,,,,,,, and graphical
plots of H,;,,,, vs k and #'. The first number of each column is the representative value; the number in parentheses is the estimated

minimum number of significant figures retained in some integrals.

autoionizing states of helium1~3 by using the
methods described here for evaluating the necessary
integrals. All calculations were performed on the
CDC 6600 computer. Thorough testing of the tech-
niques described here revealed two important char-
acteristics concerning production run times and
accuracy.

In Table I we give the estimated significant figures
retained in the evaluation of the general matrix ele~
ment,

s = (1 = Pyp)n 61)RL(2) | H— E |
X(1— Py & OEEQ),  (65)

which Lyons and Nesbet have expressed as a finite
number of terms involving the seven basic integrals,
Egs. (1)-(7). The table contains two entries for each
integral, the first indicating the representative value
and the number in parentheses the estimated mini-
mum number of significant figures retained in some
integrals, usually those of higher k£ and #’. Table I
also shows a marked decrease in accuracy for inte-
grals involving continua of higher n and n’.

The loss in accuracy for integrals involving continua
of higher n and n’ can be attributed to cancellation
among the terms comprising the expression given by
Lyons and Nesbet.® This can be reduced by obtaining
the basic integrals of Egs. {(1)-(7) more accurately
and hence by retaining more precision in the recur-
sive technique. Allowing lesser round-off by re-
normalization of the recursive technique accom-
plishes this directly. Round-off for higher % and &’
arises because of inadequate optimization of the con-
vergence properties (see Appendix) of the single-
series summation technique when evaluating some of
the F; functions needed in the X integrals. Summing
a large number of terms not only introduced round-
off error but enormously increases the production
run times. Hence the run time for small % and %’
(0~2. 0 a.u.) which is typically of 1. 5~15 secs, de-
pending on n and n’, increases to 15~50 secs per
integral for larger %k and %’ (1.0~20 a.u.). For very
large %k and %', however (k, &’ > 20 a.u.), the execu-
tion time again decreases.

It is apparent our procedures are inconvenient at
intermediate energies. This is not a severe limita-
tion, however, since an analysis of resonance states
usually is confined to lower % and #’. (The round-off
experienced as k and k'becomeslarger is not serious
in our calculations because one must in any case
truncate the continuum at some point %, ,.) A partial
wave expansion in atomic Coulomb (or non-Coulomb)

Born scattering, where the identical integrals arise,
is confined to very large values of 2 and &’ (k, k', <
2000 a.u.) when they can still be conveniently evalu-
ated. The method of Boticher on the other hand re-
quires a numerical integration over an apparently
decreasing oscillatory integrand as & or %’ increases.
This suggests that the two procedures would com-
plement one another very nicely.

In conclusion, no problems were observed in evaluat-
ing the G, H, I, B, V,and W integrals with respect to
accuracy or production run times for even remote
values of the parameters. Except for the X integrals
at intermediate energies and for continua involving
large n and n’, all integrals can be evaluated con~
veniently and accurately. We believe the major
significance of this work, however, lies in Eqgs. (33)
and (46) which express the exchange integral X as an
heretofore unknown finite sum of F, functions. As
more convenient means of obtaining the general
hypergeometric F, functions of Appell4 become
available, these equations along with those for W will
be most useful.
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APPENDIX: OPTIMIZATION OF SERIES CON-
VERGENCE IN EVALUATION OF F,

To initjate and renormalize the recursive technique
described in Sec. V, the F; function must be evaluated
by truncating the definitive infinite series,14

’ hd had am+nbmb;t
Fl(a’byb ’c;x,Y)=2 E — Xy,
7=0 m=0 C,,,min!

lx1<1, j»I<1 (A1)
at some suitable point. To minimize this truncation
error and limit the summation to a reasonable
number of terms, it is necessary that the arguments
x and y be limited to well within the radius of con-
vergence of the series as indicated above. In general
this is not true and some appropriate transformation
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of the series to some other series which has reduced
arguments x” and y’ is required.

The possible transformations of Appel's F; functions
are many. The five most direct and familiar are914
Fl(a; B,BI:Y,x,y)

= (1 - x)'B(l —_ y)_B’

XF]_('}/ —a,B,8, ny—ffT’ﬁ'T)’ (AZ)

=(1——x)‘°‘F1( vy —B— 8, B"Y’x_v;—_-{)

(A3)
— (1 —_ )‘a Fla —_ — R l__'x.. _.y__
y 1 By — B B’y’y—-l’y-—l-’
(Ad)
= (1 — x)7" e B(l — y)8’
R R R e
= (1~ x)8(1 — y)r o8’
XF1<'}’ aB’Y—B ﬁ,'}”x {:) (AG)
Via the expressionl4
Fl(aJB’B”)’7x,y)
= (1"'5’5)“B F3<7_ a,0,B8 :'}’; 17y> (A7)

and the corresponding expression with arguments x
and y/(y — 1), twelve transformations involving Fj
become available; but only sixare unique. Analagously,
applying the relation14

Fl(ay B}ﬁ')77 x,y)
= 8’y 8 Fy(B + 8, 0,8, 7,8 +6,51-3)  (aB)

and the three transformations of F,,% 14

Fz(a_; ﬁ: B', Y 7,, X, .})

_ y
=(1-—x)aF2< BB:'Y;Y:x__l’l_x):Ag)
.*(l—y)'aF2<a B,v' —B’Y,Ysl_y y—-l )

(A10)
=(1__x_.y)‘ll Fz(a,y_ﬁ)y’

—3'97’:7’;x+;_1yx+;~ 1>: (All)

we obtain twelve new unique expressions for F ;.

Consider again the six containing F 5 transformations
obtained above. By utilizing the analytic continuation
formula for F5,%14 and by transforming the resul-
tant F, functions to the F, functions in Egs. (A9)-
(A11), twenty four add1t1ona1 transformations of F;
are obtained. These latter transformations are
applicable for large starting values of x and y in the
desired F, function.

Finally, employing the Horn's H, function defined by
the series? 14

00 0 a)\—uﬁk'y ﬁunyu
HZ(Q: ﬁ: Vs 6) €, X,y) )\; u_E ——‘é)\Tu!;'!‘—, (A12)
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and the relation this function has with the F; func-
tion,20

F3(Cl, a’'y B, B'svs %, }')

PB— o)) y-a
= I‘igirig—— @) )

XHZ(I+a—y,a,a’,ﬁ’,1+0—3é%,‘y>
Fla = A0 s
T'(a)T(y —

1
XH2(1+,3—')/,B,01,B;1+B‘_0‘y}';_y>’

(A13)

twelve more unique possibilities exist for expediting
the F, calculation. Equation (A13) above has the
para.llel relation20

Fg(a @', B, By, X, y)

_Ip—o )F( )i oha
F(B/ F(‘y ("‘ y)

X Hy (1 +a —vy,0,a,p1 +a’—B’,%,—x)

+ BB -

1
XHZ(I + B — v, B , @, 8,1 +p — aliy!—x)
(A14)

indicating its utility when either one of the original
values of x and y in the F; function is large and the
remaining argument is small.

We have just outlined means for obtaining 60 trans-
formations of the F, series leaving us with 60 unique
sets of arguments x’ and 3’ which are analytical
functions of the initial arguments x and y. The initial
arguments x and y are, of course, fixed by the expres-
sion for the integral, either V or X. But there are
two different ways of performing V and X, which will
give different numerical values of x and y. In Eq. (7)
for X one has a choice of integrating over either 7,
or v, first. Although indentical analytical expres-
sions for X arise, the numerical values of the x and
y arguments in F; of Eq. (46) will be different pro-
vided we are calculating a nondiagonal matrix ele-
ment [(n, {, k) # (v, ', #’) in Eq. (65)]. Although we
must integrate over the bound components first in V,
Eq. (6), we have two alternate ways of performing the
F, to F, transformation in Eq. (48). [The second F,
to Fy transformatlon can be obtained by switching the
parameters g2 8/,yZ ¢’,and x 2 y on the right side
of Eq. (48).] This then gives us 120 possible sets of
arguments x’ and y' for optimizing the convergence
of the infinite series.

The hypergeometric functions, although defined by the
double infinite series [i.e., Eq. (A1)], can be reduced
to a single series of ,F; functions14:

0 B

F]_(“}B:ﬁ,"}’,x:y)z e ((1 +)‘,B”'}’+A’y)7
(A15)

0 @ B
F2(a; BBy %, y) = )\E_O;;f}\_?— g 2F1(a +A,8,7, y);
i (A16)

B
Fs(a ', B, By, %) = E )\;yx 2y (@', 8,y +1,3),
(A17)
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& o\
Hz(a,ﬁ,y,é,e,x,y)z E 1

r=0 (A18)
Use of the recursion relation (HMF 15. 2. 12)
clc— 1)z —1) yF la,b,c—1,2)
+cfc—1— (c— a—b~1)z] ,F(a,b,c,2)

+ (c—a)c—b)z yF,(a,b,c +1,2) =0, (A19)
and Eq. (18) enables us to evaluate all the ,F; func-
tions rapidly, effectively reducing the double infinite
series to a single series. Round-off error in the re-
cursion relation requires, however, that the recursive
technique be renormalized periodically. We have
used these single series expressions to evaluate the
Appel functions renormalizing as demanded by round-
off accumulation. Calculations reveal that renormal-

y)\ zFl(a - B, €, x)-
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ization is required at approximately every five to ten
terms indicating that the number of terms have been
reduced from the direct double infinite series by a
factor of 30 to 100.

The general method of calculating an F, function
should now be obvious. We simply determine which
of the 120 sets of arguments x’ and y’ is smallest and
proceed with the single series summation giving the
maximum rate of convergence. It is assumed that
with 120 possibilities we will always find an x’ and y’
combination well within the radius of convergence of
one of the infinite series. Calculations revealed, how-
ever, that for rather large and different values of x
and y, we did not reduce x’ and y’ sufficiently to in-
sure very fast convergence. Indeed, it is this fact
which makes our evaluation techniques inconvenient
for integrals in the intermediate energy ranges.

The material in this paper is contained in a Ph.D. dissertation

submitted to the faculty of the University of lowa.
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Approach to Stochastic Lagrangian Integrals and Their Asymptotic Evaluation for Sound
Propagation in Continuous Stochastic Media*

Jerome A, Neubert
Naval Undersea Researcl and Development Cenley, Pasadena, California 91107

and

John L. Lumley
Deparimen! of Aerospace Enginecrving, The Pennsylvania Slale University, Universily Park, Pennsvivania 16802
(Received 4 June 1971)

Previously the formal solution of the Eulerian-Lagrangian problem for sound propagation in continuous sto-
chastic media was reframed so that the emphasis on the need for complete knowledge of the statistical nature
of the Lagrangian functional of interest is shifted to the need for knowledge of the asymptotic behavior of cer-
tain stochastic Lagrangian integrals which result from the application of a central limit theorem for stochastic
functionals. In this paper,the asymptotic evaluation of these Lagrangian stochastic integrals is developed and
illustrated for both ensemble and subensemble expectations in a statistically isotropic medium. In addition,the
relationship between this method of analysis and the comparable Wiener integral is discussed.

INTRODUCTION

In Ref. 1,the search for a proper asymptotic solu-
tion? to the stochastic Helmholtz equation

V2p + k%p.zp =0, (1)

where p represents the sound pressure wave,k, is
.the free-space wavenumber,and p is the refractive
index, for sound propagation through continuous sto-

chastic media (for example, due to the random effects
of the scalar inhomogeneities in a turbulent medium;
see Neubert and Lumley3) lead to the intrinsically
Lagrangian relation p[X(s, £)], where X(s, ¢) is a con-
tinuous, differentiable path of arc length s from the
initial point £. The one-dimensional solution was
given in Ref. 1 (see also Frisch4),but the three-di~
mensional solution resulted in consideration of the
Eulerian-Lagrangian problem for sound propagation
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& o\
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+cfc—1— (c— a—b~1)z] ,F(a,b,c,2)

+ (c—a)c—b)z yF,(a,b,c +1,2) =0, (A19)
and Eq. (18) enables us to evaluate all the ,F; func-
tions rapidly, effectively reducing the double infinite
series to a single series. Round-off error in the re-
cursion relation requires, however, that the recursive
technique be renormalized periodically. We have
used these single series expressions to evaluate the
Appel functions renormalizing as demanded by round-
off accumulation. Calculations reveal that renormal-

y)\ zFl(a - B, €, x)-
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ization is required at approximately every five to ten
terms indicating that the number of terms have been
reduced from the direct double infinite series by a
factor of 30 to 100.

The general method of calculating an F, function
should now be obvious. We simply determine which
of the 120 sets of arguments x’ and y’ is smallest and
proceed with the single series summation giving the
maximum rate of convergence. It is assumed that
with 120 possibilities we will always find an x’ and y’
combination well within the radius of convergence of
one of the infinite series. Calculations revealed, how-
ever, that for rather large and different values of x
and y, we did not reduce x’ and y’ sufficiently to in-
sure very fast convergence. Indeed, it is this fact
which makes our evaluation techniques inconvenient
for integrals in the intermediate energy ranges.

The material in this paper is contained in a Ph.D. dissertation

submitted to the faculty of the University of lowa.
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Approach to Stochastic Lagrangian Integrals and Their Asymptotic Evaluation for Sound
Propagation in Continuous Stochastic Media*

Jerome A, Neubert
Naval Undersea Researcl and Development Cenley, Pasadena, California 91107

and

John L. Lumley
Deparimen! of Aerospace Enginecrving, The Pennsylvania Slale University, Universily Park, Pennsvivania 16802
(Received 4 June 1971)

Previously the formal solution of the Eulerian-Lagrangian problem for sound propagation in continuous sto-
chastic media was reframed so that the emphasis on the need for complete knowledge of the statistical nature
of the Lagrangian functional of interest is shifted to the need for knowledge of the asymptotic behavior of cer-
tain stochastic Lagrangian integrals which result from the application of a central limit theorem for stochastic
functionals. In this paper,the asymptotic evaluation of these Lagrangian stochastic integrals is developed and
illustrated for both ensemble and subensemble expectations in a statistically isotropic medium. In addition,the
relationship between this method of analysis and the comparable Wiener integral is discussed.

INTRODUCTION

In Ref. 1,the search for a proper asymptotic solu-
tion? to the stochastic Helmholtz equation

V2p + k%p.zp =0, (1)

where p represents the sound pressure wave,k, is
.the free-space wavenumber,and p is the refractive
index, for sound propagation through continuous sto-

chastic media (for example, due to the random effects
of the scalar inhomogeneities in a turbulent medium;
see Neubert and Lumley3) lead to the intrinsically
Lagrangian relation p[X(s, £)], where X(s, ¢) is a con-
tinuous, differentiable path of arc length s from the
initial point £. The one-dimensional solution was
given in Ref. 1 (see also Frisch4),but the three-di~
mensional solution resulted in consideration of the
Eulerian-Lagrangian problem for sound propagation
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in continuous stochastic media which was resolved in
Ref.5 in terms of stochastic Lagrangian integrals.

In Appendix A, Eq. (14) of Ref.5 is related to the com-
parable Wiener integral for a stationary Markov pro-
cess. However,the main concern of this paper is the
treatment of non-Markovian, continuous stochastic
Lagrangian integrals. A realistic model for continu-
ous, weakly inhomogeneous, stochastic media is con-
structed by inference from sound propagation stu-
dies1,4,6=8 and turbulent diffusion studies®=13 so
that these integrals can be treated, and understood,
analytically. In the phenomenon of turbulent particle
diffusion,the Lagrangian autopath correlations of
particle velocity fluctuations are stationary,but the
analogous crosspath correlations are not nearly sta-
tionary (i.e.,not mainly a function of the transit time
difference {, — {; and not only a weak function of ¢, +
t,) because the paths wander apart too rapidly over a
characteristic turbulent memory time. However,in
steady-state sound propagation from a highly direc-
tional transducer through a continuous, weakly in-
homogeneous medium, there exists a predominant di-
rection of transit so that the paths wander apart only
slightly over a characteristic memory interval. This
permits the stochastic crosspath Lagrangian inte-
grals which occur in such problems to be reformula-
ted in such a manner that the effects of the curvilin-
ear statistical inhomogeneities are minimized and
the integrals asymptotically assume analytically con-
venient forms. In practice, stochastic crosspath
Lagrangian integrals appear in sound propagation in-
tensity calculations in continuous stochastic media;
see, for example, Refs. 6~8 and Sec. VI.

It is convenient to have some measure of the rms
inhomogeneity of the medium. Since this paper is
restricted to statistically isotropic media,l4 let o
represent the rms variation from a uniform medium.
For example, @ can be defined such that

u®) =1 + anfx), 2)
where

wEy =1, ®2x) =1, 2"
and

o<1 3)

denotes a weakly inhomogeneous medium.

In this paper (as in Ref. 5),the ensemble expectation
of a bounded, continuous Lagrangian functional
F[X(s, £)] will be expressed by E{F[X(s, §)]} in con-
trast to the ensemble expectation of the correspond-
ing Eulerian function F(x) which will be designated
by (F(x)). This notational distinction is advisable be-
cause the behavior of these two stochastic quantities
differs in very significant ways. For example, con-
trast E{u[X(s, )]}, which can be represented by
E{u(s)} ,with (u(x)). When it is stated that the con-
tinuous refractive index field u(x) is statistically
homogeneous (in the Eulerian sense), it is implied
that for any two different points x,,X,, including the
arbitrary origin 0 of the coordinate system,

</J.(X1)> = (u(xz )) = (”(o»’ (4)

i.e.,there exists no intrinsic origin or spacial refer-
ence point in the sense that {u(x)) behaves the same
at all points x. On the other hand, u(s) is a bounded,
continuous, differentiable functional of the particular
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continuous, differentiable path X(s, £) of arc length s
from & which can terminate at a different point X =
X(s, ¢) for each field realization y,(x) € {i13}. There-
fore,for each s € (0, ), u(s) has a volume spread
(over all pg € {u,}) of terminal locations X and the
total ensemble of Eulerian fields {uﬂ(x)} generates an
ensemble of paths {X,(s, £)} for each pair s, £.
Thence, while (see Sec. V)

Eluls = 0)} = EpO)} = E{uw(®)} = (@), @)
so that E{u(0)} is still Eulerian,the Lagrangian en-
semble expectation E{u(s > 0)} encompasses a con-
tinuum of terminal peints and need not equal
El{u(s = 0)}. Thus,in general, it is not expected that
Lagrangian ensemble expectations will behave like
their analogous Eulerian ensemble expectations be-
cause of the Lagrangian spreading of the terminal
position. Still it might be hoped,that over a statisti-
cally homogeneous field, as s becomes long enough
E{u(s)} would not continue to increase,decrease, or
vacillate but would settle down, after some initial ad-
justments,to a constant value. In fact,however,it
shall be shown in Sec. IV that,in the case of Fermat
paths, E{u(s)} evolves continuously and does not reach
an asymptotic value even if the refractive field is
statistically isotropic (it does,however,obtain an
asymptotic form). This occurs because the Fermat
paths are continually seeking regions of lower sound
velocity ¢ so that, since p o« 1/¢,E{u(s > 0,a > 0} >
E{u(0)} = (u(¢)) and increasingly so as s and/or a
increase. However,some additional stochastic Lag-
rangian concepts must first be developed before
E{u(s)} can be evaluated. It was shown in Ref. 5 that
consideration of the Lagrangian spreading and its
implications,as well as the nature of the path X(s, £),
can often serve as a suitable bridge from the known,
ov assumed, Eulerian statistical concepts to the un-
known Lagrangian statistical concepts.! However,
the full significance of this spreading will only be re-
vealed gradually throughout this paper.

I. THE ASYMPTOTIC EVALUATION OF STOCHAS-
TIC AUTOPATH LAGRANGIAN INTEGRALS

Let F[X(s}, &;)], which canbe represented by F(s}),be
an arbitrary bounded, continuous Lagrangian func-
tional of the continuous path X(s;, £,) of arc length s
from a point £; on the bounded, continuous initial
surface Sy and let G[X(s,, &,)], which can be repre-
sented by G(s;),be an arbitrary bounded, continuous
Lagrangian functional of the continuous path X(s;, &;)
of arc length s, from a point £, on the same initial
surface §;. Each realization uﬁ(x) generates a pair of
such paths and the paths coincide for s] = s, if and
only if £, = £&,. It can be assimed without loss of
generality that

E{F[X(s\,&)]} =0
E{G[X(Sé, £2)]} = 0’

since otherwise the deviation from a nonzero expec-
tation may be considered.

(5a)

and
(5b)

There are two ways of viewing integral ensemble ex-
pectations like

S S ! - ’
E {fo‘dsi fo” dsj F(sl)(,(sz)}:
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1. The Lagrangian viewpoint: Assume $,,S, given
and then X(s,, £;),X(s,, £,) are stochastic,i.e.,the
arc lengths s,,s, traveled are known but not the ter-
minal points X(s, £,),X(s5, £,), which vary from
realization to realization. This permits

E{jglds’l f:zdsé F(ss’l)G(s’z)}S |
= foldsi f()z dSé E{F(S'I)G(Sé)}, (6)

where E{F(s’l)G(s’z)} has some convenient properties,
which will be discussed later in this section,that per-
mit treatment of this integral. The problems which
arise from an unknown terminal location are resolv-
ed in Ref. 5

2. The Eulerian viewpoint. Assume X,X, given
and then s, = s(xy, £),5, = (X4, §,) are stochastic,
i.e.,the terminal points x;,x, are known but the arc
lengths s, s, traveled vary from realization to reali-
zation (erogodicity is assumed);this requires

S ’ 5 ' INA
fol ds} fo dsj F(sl)G(sz)g
*14 ' %53 ’ dsl ’
= fO“ dxy; fo“ dsy; E3<FdX. > [X(s1, ]
\ dsz ' *
(622 )i, 1, )

J

E

no summation on i,j. Unfortunately,there seems to
be no convenient method for resolving the integrand
in Eq. (7) [see also the comments concerning Eq. (29)
of Ref.1].

Thus,the Lagrangian viewpoint is chosen since,in
every case which arises in this study, it proves pos-
sible,in principle,to express and evaluate the sto-
chastic Lagrangian functionals in terms of the sto-
chastic field u(s), its derivatives,and the initial
values dX; /ds (0). This obviates the difficulty,associ-
ated with the Eulerian viewpoint, of treating stochas-
tic sinusoidal functionals dX;/ds (s’),and even their
derivatives, along the Lagrangian paths X(s|, ¢,),
X(s;, £,) and not being able to express them con-
veniently in terms of the known field u(x).

In the treatment of phenomena such as sound propa-
gation through continuous stochastic media,the evalu-
ation of integrals of the type given by Eq. (6) is often
of primary importance.5 The integrand of Eq. (6)

£(s1,55, 81, &) = E{F[X(s}, £,)]G[X(s3, §5)]} (8)

is called a Lagrangian crosspath covvelalion when
£, = £, (in general, a care! will be used to denote a
crosspath quantity). Consider first the simpler case of
g(s,ps:27£)’ where §1 = §2 =& g(slly S’Z,E) may be
called a Lagrangian autopath covrelaiion to distin-

guish it from the corresponding crosspath correlation.

Statistical isotropy eliminates dependence on ¢ and
the Lagrangian spreading does not permit dependence

on a definite terminal point for s, s, = 0, so that
g(si, sy,8) = E{F[X(s1, 8)]G[X(s3, £)]} 9)
=g(s],55) (10a)
=g(0,8), (10p)

where Eq. (10b) follows from the coordinate trans-
formation

0=Si—8’2, S=8’1+Sé. (11)
The advantage of the form g(o, S) is that o pertains to
the local properties of the correlation while §/2
serves as a convenient center-of-mass type coordin-
ate. For a long enough curvilinear separation o,
F[X(s1,#)] and G[X(s,, £)] become uncorrelated so
that

g(0,8) —=7>0 (12)

in a boundless, weakly inhomogeneous medium [i.e.,
g(o,S) becomes unvestrictedly weak as o increases].
Note that

glo,8) = (F(x]_)G(xz)) (13)

for monotonically decreasing g(o, S) and (F(x,)G(x,)),
when 0 = |x; — x,| and @ > 0,due to the path curva-
ture in almost all realizations. The larger « is in
Eq. (2),the faster F(s]) and G(s;) become effectively
uncorrelated with |x; — x,|. The equality applies in
Eq. (13) only in the nonstochastic limit o — 0.

Since the statistical characteristics of two function-
als along any path should be unchanged in a statisti-
cally isotropic medium with the curvilinear distance
traveled (this property may be referred to as aufo-
path stochaslic invariance), a Lagrangian autopath
correlation should be locally independent of S,i.e.,

g(0,S) =glo). (14)

Furthermore,for reversible paths (in the sense that
there exists no favored direction of travel along a
path between two points,e.g., Fermat paths) it makes
no difference which functional precedes the other. In
other words,s] > s, gives the same result as s, >
s7,so that when y is statistically isotropic,

g(0) =gt 0) (15)

(this property may be referred to as aufopath corre-
lation symmelry). Note that,in the absence of path
reversibility, Eq. (15) is true if and only if F(s) =
G(s). Equations (14) and (15) represent statistical
isotropy in the Lagrangian sense. Therefore,the
Lagrangian stochastic integral of Eq. (6) can be eva-
luated as follows,in a statistically isotropic medium,
when s; = s, = s [see Eq. (40) for a method of evalu-
ation when the upper limits are not equal] and ¢ =

£ =t
§ I s ’ ’
fo ds] fo dsy g(s'}, sb)

%]:do fjs—odS g{o,S)

+1 fi do | 205+°ds £(0,9) (16)
=2 fos do (s — 0)g(0) (172)
=2sg [ do <1 ~ %)g—;%) (17b)
~ 2sgol,. (18)

Equation (17b) goes asymptotically to Eq. (18) via
autopath stochastic invariance and g(¢) unrestrictedly
weak, where the Lagrangian integral scale L g corre-
sponding to the correlation g(o) is defined by
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L, = lim [/ dc< °)3§1) (19)
§—> 00 0

and where the intensity factor g, corresponding to
g(o) is defined by

go = E{F(§)G (&)} (20a)
=(F)G(&) (20b)
=g(0) =g(s] =s3), (20¢)

and normalizes g(¢) in Eq. (19). Equation (77) justi-
fies Eq. (20b) for all s of physical intevest. The inte-
gral scale L is assumed to exist and cannot be a
function of s. In Eq. (19),Lg is defined as a Cesaro-1
integral;for even more general definitions of integral
scales,see Lumley.15 In essence, L, represents a
measure of the curvilinear range of® strong correla-
tion between F[X(s}, £)] and G[X(sy, £)];when 0 >> L,
they are essentially uncorrelated. Thus, L serves
as a stochastic scaling factor for the curvilinear
memory of g(o,S) and is particularly important in
interpreting integrals involving g(o, S).

In practice,the result of Eq. (18) is physically useful
if and only if this asymptotic form occurs for s small
enough to satisfy the conditions imposed by the pro-
blem of interest. This empirical point will be deve-
loped further as this study evolves. Obviously the
nature of the convergence assumed for Eq. (12) deter-
mines the class of integral scales L _that are physi-
cally useful in Eq. (18),and espec1all§r the rate of con-
vergence of Eq. (17b) to the asymptotic form of Eq.
(18). Note that the faster g(0)/g, declines to a negli-
gible value,the smaller L g becomes. However,the
analogous Eulerian integral scale L,

e (F(x,)G(xy)) _
= [ alx — % | b = Lo

represents a lower bound for L ¢ €quality occurs only
in the nonstochastic limit o —» 0, where there exists

no path curvature. Monin and Yaglom!1! observe (see
Sec.9.3) from emplrlcal studies that large variations

in the value off dslf dsg g(s7, 2) for o = O(L ),

due to varlatlons in the form of g(s],s’),occur only
if g(0,S) is permitted to assume negative values and
to change sign frequently with increasing ¢ and that
when g(o, S) remalns nonnegative for all o, the depen-
dence of J ds} f ds’ g(s{,s%) on the specific form
of g(o, S) 1s very Swealk and the asymptotic form of Eq.
(18) is rather well satisfied for all ¢ & 5L,. For a
fluid mechanics analog of Eq. (18),see Egs. (9. 30)-
(9. 36) of Monin and Yaglom1!! [also consider Eq.
(7.1.3) of Tennekes and Lumley13].

1)

II. THE ASYMPTOTIC EVALUATION OF STO-
CHASTIC CROSSPATH LAGRANGIAN
INTEGRALS

The asymptotic evaluation of integrals involving
Lagrangian crosspath correlations is more compli~
cated than for autopath correlations but is analogous.

Xy, 8)

S2

XGs3.§)

FIG.1 Example of Lagrangian crosspath spreading.
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When &, = &,, statistical isotropy gives

é(sll,Sé,El,gz)=§(Si,8'2,|§1 §2|)— (5173216)9

(22)
as can be seen by rotating and translating the source,
with

6=k — &, (23a)
and

6= I8 — &l (23b)
Furthermore,

8(s1,55,0) < glsy,s5),  6>0, (242)

=0 8(51,53) (24b)

and

8(s1,83,8) —55%>0, s1,s; finite; (25)

note that,in general,the limit 6 —» 0 reduces cross-
path quantities to the corresponding autopath quanti-
ties. Again,in a boundless,weakly inhomogeneous
medium,

§(31,Sé96):§(0;s,6) (26)

5> 0. 27)
However,in contrast to the Lagrangian autopath cor-
relation g(o, S),the Lagrangian crosspath correla-
tion g(c, S, 5) cannot be exactly independent of S be-
cause the path spreading must affect the statistical
characteristics of the product of the two Lagrangian
functionals; see Fig.1. However,if the path diverg-
ence is negligible over some suitable measure of the
curvilinear range of significant correlation between
F[X(s},&;)] and G[X (s}, ¢,)],8(0,S, 6) should be at
most a weak function of S [this property may be re-
ferred to as the crosspaih slochastic invariance
approximation; see Eq.(69) and Appendix B|. Like-
wise, since the paths from & 1 and &, are continually
diverging, g(o, S, 6) will not, in general, equal 3(— ¢,S, 5)
unless the mean path dwergence occurs so slowly
over a region of significant correlation between

FX(s",£,)] and G[X(s}, £,)] that £(0, S, 6) is essen-
tially unaware of this gradual spreadmg of paths (this
property may be referred to as the crosspath corve-
lation symmelry approximalion). Since the amount of
mean path divergence can be kept small by making the
inhomogeneity factor o as small as necessary [see

q.(69)],it will be assumed that the mean path diver-

gence is negligible over a curvilinear range of several
Lg(f)) as defined by Eq. (33), for all s of physical
inleres! so that

2(0,8,6) =2 0,8,6) (28)
—ss0—> &(0), (14")

with g(0, S,6) a weak function of S. Note that for re-
versible paths, the mean path divergence can be the
only reason for the dissymmetry of the correlation
glo,S,6) since, in the absence of spreading,there
exists no means of inferring a distinction between
§1 > s, and s, > s} from any statistical character-
istic when p(x) is statistically isotropic.

Therefore, the integral of Eq. (6) can be evaluated as
follows when s; = s, = s:
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s

f dS deSQg 31532,6)

= fosdo f2 ds (s, S, 6) (29)
=9 fos do (s — 0)g(o,s,6) (30a)

= 253(0,5,06) J, do (1— o/s)E{025:0) (30b)

£(0,s,9)
~ 25Z,(8)L ,(0) (31)
=0 ngOLg (18"
—55=> 0, s {inite, (271
where the convenient definition

£0,5,0) = 5 [ a8 5(0,5,0) (32)
—5=0> 8(0) (147)

gives Eq. (30a) and Eq. (31) follows asymptotically via
Egs. (33) and (34). The new function g(o,s,6) repre-
sents a sort of curvilinear average of g(o S 8). Since
g(0,8,5) is a weak function of S for suff101ent1y slow-
ly dlvergmg paths, it is expected that g(o,s,8) is an
even weaker function of s. The Lagrangian integral
scale L (6) corresponding to glo,s,0),i.e

2Ry = 1 [ 0\g(o,s,0)
L _(8) = lim do(l— —~>———— (33)
A=l Jo $/£(0,s,0)

WLg (19’)

is assumed to exist and cannot be a function of s. The
intensity factor g(0,s,5),where

g(oisié) = 3},%1 g(oysré) (32’)
~ g,(0) (34)
—=o> £,6) = E{F(§,)G(¢,)} (35a)

= (F(£1)G(£,)) = g,(6) (35b)

=0~ 8o (20°)
—=2> 0, s finite, (27

serves as a running measure of intensity and pro-
duces the necessary normalized correlation g(o,s,s)/
2(0,5,6) in Eq. (33). Equation (35a) follows in the
same manner as Eq. (20b). Again, L, (0) represents a
curvilinear memory interval in the sense that when
F(X(s],&,)] and G[X(s3, §,)] are sufficiently separa-

)

s

[ ast [* dsy &(sh,55,0)

ted in almost all realizations,they forget about each
other [see Eq.(27)].

It would not be surprising to find [when g(o, s, S) is
unrestrictedly weak] that L (6) is largely mdependent
of 6 as well as of s for all s of physical interest be-
cause of the normalizing presence of g(0,s,0) in Eq.
(33). Furthermore, since

glo,s,0) (o)
2(0,5,6) 570~ géo‘

L (5) is probably nearly equal to L
szcal tntevest and § less than, say,§

(36a)

for all s of phy-
,i.e.,
L 6) =

6 < 3L, (36b)

g’
The main analytical restriction on the usefulness of
Lagrangian crosspath asymptotic integral evaluations
like Eq. (31) proves to be the 6 dependence of the in-
tensity factors. This difficulty can be obviated in
practice by averaging & over the surface S, of the
acoustic source.”

The factor g () has been introduced into Eq. (31) to
replace g(0, s, 8) since, although g(0,s,6) is a weak
function of s,it may not be a neghglble function of s
because of the cumulative (spreading) effects of S

in Eq. (34) over large s. On the other hand,as discus-
sed in Appendix B, g(0,s, 6) probably varies little
over the s range of expenmental interest even though
it may be significantly less than go( ) of Eq. (35a).
Therefore, g,(0) represents the curvilinear average
of g(0,s,5) over the s range of experimental interest.

This study will not be concerned with the satisfaction
in particular experiments of explicit conditions for
the asymptotic validity of relations like Eqgs. (18) and
(31), since the resulting integral scales are usually
poorly known or not at all.?»11,14,16 Ingtead,an em-
pirical point of view will be adopted in which it will
be assumed that relations like Eqs. (18) and (31) are
valid, with the integral scales only negligibly depend-
ent on s for all 8 of physical inteves!. Therefore, in
practice,after carrying through all of the analysis,
the final results must be compared with experimental
results to determine the region of validity. At this
juncture, it does not appear possible to devise a com-
pletely general method for determining the s depend-
ence of Lagrangian integrals like Eq. (6).10 In fact,

a completely general Lagrangian method of attack on
problems of the type considered in this study does
not appear to be presently available.?,9

Equation (6) can now be considered in its full genera-
lity under the assumptions of the crosspath stochas~
tic invariance and correlation symmetry approxima-
tions. Arbitrarily choose s, = s, and consider the
situation illustrated in Fig.1 for a typical realization
pg With £, # £,:

0
25 - - s 25,0 - -§,~ S 2s -0 -
— (Mao [ as §o,s,0) + [ tde [ F dSE(0,5,8)— 5 [F da [ ¢ ds §(o,$,0) (37)
(1] o 0 (e} 0 25+ 0
2s5-0 — :
—~=e=> [ o[ ds §(0,s,0) 29°)
> 2 f()‘ do (s — o)glo) (17)
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=s, g(0,5,,6) fslda 1-2 pe % o \&6,8,,8)
18,8, o s g?__-;(o,sl,ﬁ +s2g(0,32,6) ‘/0 do 1——¥)m

- -~ 8, -5
'”slg,,(é)[llg(c))+f0sz 1do(1+§§—1—

g gAz(":svsz,G)
E(O,Sl,b)

575 -~
- fo do (sy — 81— 0)ga(0,5,,5,,06) (38)

J

r5 50| L0~ [ ao <1'%>M] (39)

o, Es 2sg,(6)L,(5)

= g-fa(é)[slf,l(sl,sz,é) + sziz(sl,sz,())].

If this derivation is repeated with s; = s,,the last
term in Eq. (37) is replaced by

578, 2s, -0 -
— %jo‘ doLS;o ds z(o,S,8)

_ 0 25,40 ~
=—3 fsz_s1 doszZ_ ds g(0,$,0)

o]

Y ! 2970 6 e o
= ZL 40 oo v ds §(,8,6) (41a)
S378,
—~gp> [0 | dolsy— s — 0)gls)
_o (41b)
0. (410)

s 5iss”
BEXER

Equation (41a) shows that Eq. (37) is valid for all
pairs s,,s, € [0,®). The limit of Eq. (41c) shows the
last term in Eq. (37) is a measure of the effect of the
curvilinear length disparity |s, — s,|. Equation (32)
and

82(0,8,,8 6)5——-—1—-—-lf252_0d8§(os %)
2\0,81559, (Sz__ s, — a) 2 2s,%0 7 (42a)
—=5> 80), (42b)

which should be only a very weak function of s, and

of s,,give Eq. (38) from which Eq. (33) yields Eq. (39).

It is convenient to define

le(slyszyé) ~
_ = 5,75, o gz(o,sl,sz,(‘))
“Lo s [T el g )R
# Ly(sy,85,0) (44a)
— 555 4,0) (45a)
50 L (46)

and
£2(81>32’5)

~ _[S27% A 52(0531’32’5)
L(5) jo do<1 282>———g.(0’sz,5) 47

il

# Ly(sy,55,0) (44b)
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Z0,s5,0)
(31')
(18")
(40)
f
—555, 5 L 0) (45b)
0> Ly (48)

Equations (43) and (47) give Eq. (40). Note that the
limits s, — s, = s and/or 5 - 0 reduce the new ex-
pressions to the earlier,less complicated results.
When s,, s, are both large, which is the only case of
interest in this study,

-~ - -~ s2-sl 52(0,31,82,5)
Ll(Sl,SZ,G) o~ Lg(é) + j(‘) ddw (49)
and X 5)

-~ ~ §,~$ 8910,84,S8
Lals1,50,0) = L) = [* " do=zp-k—. (60)

Since |s, — s,| can still be quite large,L(s1,55,0)
and Ly(s,,5,,0) can differ considerably; for example,
when s, — s; > several Lg,Ll(sl,sz,é) & 2Lg and
Ly(s,,55,0) ~ 0 for 6 small. Therefore,relations
like Eq. (40) could present considerable analytical
difficulty because the exact nature of the s,,s, de-
pendence cannot be discerned. Fortunately,a saddle-
point evaluation of {|p{x)}2) (via Ref.5) results? in
§, = $, = Sy, the saddle-point, and, consequently, the
limit of Eq. (31’) occurs.

Im. SOME CONSEQUENCES OF STATISTICAL
ISOTROPY

Appendix 4 of Lumley!5 contains a thorough discus-
sion of invariant theory and the consequences of sta-
tistical isotropy. From this discussion,the following
four theorems are adopted for the purpose of this
study. Theorems Ia and IIa are straightforward, but
Theorems Ib and IIb need some special consideration.

Theorvem la: When u(s1), 1(Sg)s .« - - 5 (83, s ;(S4)
are Lagrangian functionals with the arc lengths s,
Sgy...,53,5, along the same Fermat path from the
initial point £ in each realization,

E{#m(s’l)un(sé)... ul(sé)p_, ‘(Sé)} =0, (51)

where m,n,...,l are finite integers, and the refrac-
tive index field u(x) is statistically isotropic. Like-
wise for all such tensor functionals of odd finite rank.
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Only the case of
Fils1,s5) = By, [X(s1, Y uX(s5, 8]} =0

need be considered;the more general situation can be
demonstrated in an analogous manner. When u(x) is
a statistically 1sotrop1c field, the vector f;{s},s;) can
only depend on s3,55 € [0,00) Let B; be an arbitrary
vector. Then f,B;, = g(B,;B;) = 0, smcef B; must be
linear in B, and yet it can only be a functmn denoted
by g(B iBi)’ of the only possible transformation in-
variant B, B,. Therefore, f(s},s;) = 0. Equation
{51}, and, in general, Eq. (51) can be viewed as a
consequence of the Lagrangian spread of terminal
locations when s’l, s’2 > 0 since no distinct terminal
separation vector means that there can exist no such
dependence.

(51')

Theovem Ib: When p(s1), u(sp)s . -, 1s3), iy ,(s,,)
are Lagrangmn functionals with arc lengths s1,s%,

. 185,84 along different Fermat paths from a con-
tinuous initial surface S, in each realization and o >
0,

we{sadi, (s} ~ 0, (52)

where m,n,...,p are {finite integers,and the refrac-
tive index field u{x) is statistically isotropic. Like-

E{u’“(si)ﬂ" (sp) -+

wise for all such tensor functionals of odd finite rank.

In contrast to Eq. {(51'}, consider

flst,55,8) = E{p, [X(s, 8))/u[X(sh, £5)1} (52)
~s=p> fi(81,82) =0 (51”)
—55>0  (s1,s, finite) (53)

“‘E‘E—;O—_;Ae(é)éi’ (52")
Note thatf {s},55,0) can depend on § and,in fact,is
given by Eq. (52") for si,s; - 0. In the case of turbu-
lent particle diffusion,10~13 the Lagrangian cross-
path correlations of particle velocity fluctuations are
a function of 6. However,in case of sound propaga-
tion, when all the paths from §; share a dominant
initial direction,they leave the initial surface rapidly
as they diffuse and their memory of 6 fades. When
their memory of the directionality of 6 is lost due to
the Lagrangian path spreading,

fi(sh,s5.8) ~ fi(si,s5,0),

i.e.,6 = |6] may still be important. However, Egs.
(24a) and (51') give

0= fi(s},55,0)=
so that
filsy,s5,8) ~

a >0, (54)

fi(siasé) = 0:

0,a>0. (54')
Theorem Ilg: When u(s3),...,u(ss), iy(s3),

p.;(s%) are Lagranglan functionals with arc Tengths

sl, < 59,53, s4 along the same Fermat path from the

1n1t1a1 point £ in each realization,

E{um(s?)

-t (Slz)ﬁi,,(sé)ii'](sé)} = B()aij 7% O: (55)

where B, is a scalar function of s},...,85,55,5, €

[0,) and 6;m,...,n are finite integers, and the re-
fractive index field u(x) is statistically isotropic.

Note that this theorem can be extended to include all
such autopath Lagrangian functionals of finite even
rank;for a rigorous treatment of this theorem and
its extension,consult Lumley.15

Theorem I1b: When u(sy), ..., us,), p(s3),
TRCH ) are Lagranglan functlonals with arc lengths s7,
. ,sz,s3,s4 along different Fermat paths from a
continuous surface §; in each realization,
E{um(sy) - wn(splu (spu (s} ~ Bod,, #0,  (56)
where B, is a scalar function of s}, . ,32,33,34 e
[0, ) and all the initial separations 3 ra = Eqls
withp,g =1,...,2,3,4;m,...,n are flmte 1ntegers
and the refractlve fleld u(x) is statistically isotropic.

This theorem follows by a direct extension of the
previous methods.

IV. SOME STOCHASTIC LAGRANGIAN INTEGRALS
ALONG FERMAT PATHS

Now that most of the basic concepts have been dis-
cussed, some representative Lagrangian ensemble
expectations, which are dependent upon stochastic
Lagrangian integrals, may be investigated analytical-
ly for the case of Fermat paths. Of particular signi~
ficance are E{nu(s)} and AX;(s, ¢) [see Eq. (66)]. This
latter quantity represents a useful analytical mea-
sure of the Lagrangian spreading and proves to be in
agreement with the discussion given in Sec.III of
Ref. 5.

When u(s) = u[X{s, )] is a functional of 2 Fermat
path,i.e.,X(s, £) is governed byl.7,14

= :S< dX‘) (57)

for all realizations of a statistically isotropic en-
semble {u,}, E{u(s)} can be related to E{u(0)} of
Eq.(4') as follows:

E{u(s) — w0} = a[E{(s)} — Efn (@)} ] = aE{n<s)}(

58a)
(58b)

\\

%f ds' u, (s)df (s' )%

1(0) n
B}y
{u(s’) w0
1, (s (™))
1 TCH
(58c)
(s"n;(s")—0(a)}
(59a)
ozgsRof do (1~—->R(°) O(a3s)

= [
+ozfdsjd

= azfosds’ f;«lz!s”E{n'i

~ a?sRyA (60a)
'—&:;6—}’ 0. (600)

Equations (2') and (4') yield Eq. (58a); Eq. (59a) fol~-
lows from expanding [1 + an(s’)]~1,with 0 < a < 1,
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and from Eq. (51). Defining
R(o) =R(s’,s") EE{n'i(s’)n.i(s”)} (61)
via Eq. (14),gives Eq. (59b) which goes asymptotically

to Eq. (60a), where the Lagrangian integral scale cor-
responding to the correlation R(o) is defined by

A= 11mf do 1( >R(°) (62)
with the intensity factor e
Ry = Eln,; (E)n,; (8)}

= Qry; (E)n5; (£D);

A is assumed to exist and cannot be a function of s.
The limit of Eq. (60b) is a direct consequence of un-
limited Lagrangian terminal spreading over Fermat
paths and Eq. (60c) resultsbecause, in the nonstochas-
tic limit,

(63a)
(63b)

E{u(s)} —5=o—> 1, (64)
as required in a uniform medium. Note that
E{u(s)} =1 + aE{n(s)} ~ 1 = (&) = E{u(0)}
(65a)
if and only if
1>>02sRyA = 0. (65b)

Equation (65b) is the condition for Lagrangian statis-
tical homogeneity for this case in the sense that

E{u(s )} = E{u(sy)} ~ E{u(0)} (65¢)
is analogous to Eq. (4) when both s, and s, satisfy
Eq.(65Db).

The Lagrangian spread of Eulerian terminal points
for Fermat paths can now be investigated in order to
understand better how it affects Lagrangian ensemble
expectations over Fermat paths. An appropriate mea-
sure of the Lagrangian spread is

[ax,(s, 812 = E{[X,(s, &) — E{xi(s, )} ]2} (66)
f [dX s ,[um) { u(O){]
=FK 0 d — FE
| P Rl IR e
T T O T |
* fo 4 jo u(s’)} ‘

2(0) f O] 5 { 1(0) 1)

Jop — E

+< {”(31)“(52)} ? (31” #(Sz)j

« %10 ‘<0)] (67)
ds
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3 s 2s3/3 Ry
— o<as3>H1 + % 0% <0)} (68)
S ds
dx,  dX;
~ 3 1 _
02s3R (A, [1 ) ~ (O)J, (69)

no summation on i, which represents the diagonal
terms of the Lagvangian spreading matvix, Eq. (20) of
Ref. 5,for Fermat paths. Equation (69) has a fluid
mechanics analog in Richardson's “nearest-neighbor
diffusion” (cf. Eq. 113 on page 48 of Corrsinl2),
Equation (67) follows from

X,(s,£) = &, +fds X( ', &)

ax. s
=& +—2(0 d
& ds ) fo : u(s")

s s, FL.,’(S//)
+ [y as [ as e (70)

, 4(0)

and Eq. (51"). The expression

0 dx, s, 0 (s")
“”_1__@)]0 SIS

I_JG B ds
s i s! ” IJ‘ l( ) ( )
-~ ] ds ds” ————— (11
bas o =gua ™
produces Eq. (68) which goes asymptotically to Eq.
(69), where

s 3
Ay=lim [ do<1—ﬁ’+5’-"_>5(i) (12)
s> =0 2s  4s3/ R,
is assumed to exist and cannot be a function of s.

V. THE LAGRANGIAN SUBENSEMBLE
EXPECTATION

In Ref. 5,the Lagrangian subensemble expeclation of
F(x),
E{Fx H~xh,  (13a)
where the rigorous interpretation of X(s, £) = x is
X +dx > X(s, ¢) = x, was introduced. For the purposes
of stochastic Lagrangian analysis, it would be conveni-
ent if integral ensemble expectations like Eq. (6) were
analogous in their asymptotic behavior for full en-
semble and subensemble expectations, even though the
respective integral scales and intensity factors are
not expected to be identical. Before investigating this
hypothesis, it is important first to understand the
essential difference between E{F[X(s, £)]} and
E{F[X(s,¢)])}. In Secs.IandIV,it was emphasized that
Lagrangian spreading dlstmgulshed the Lagrangian
ensemble expectation E{F[X(s, £)]} from the Eulerian
ensemble expectation (F (x)) However,by definition

(s,8)]} = E{F[X(s, H]IX(s

E{F[X(s, )]} = E{F[X(s, &)]|X(s, £) = x} (73a)
= E{F(x)} (73b)
# E{F[X(s,8)]}, s,a>0, (74)
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# (FR) = j;”ds fso dt B{F{X(s, £,)]
x B(X, ¢ls), (15)

i.e., E {F[X(s, §)]} permits no spread aX(s, {) of the
terminal location [Eq. {73b)] and, therefore, it differs
from E{F[X(s, )]} [Eq.(74)]. Equation (75) is Eq. (13)
of Ref. 5 and shows that E{F[X(s, £)]} is only “quasi-
Eulerian” and does not equal (F(x)) [unless the joint
probability density B(x, £|s) acts like a § function;
see Sec. Il of Ref. 5] because it includes only one
value of the pair s € [0,%),£ € S,. In the case of
E{F[X(s, £)]|X(s, £) ~ &}, it is reasonable to assume
that, for statistically isotropic media, only s = 0,

X (0, &) ~ £ can contribute for almost all yg,i.e.,the
measure of the set of py which produce paths that
double back from S to £ is zero for o <<1 and for
all s of physical intevest., Thence,

E{F[X(s, £)]|X(s, ) ~ &
= E{F[X(0, £)]1X(0, §) = &} = E{F ()}
= B{F[X(0, )]} = E{F(&}
=(F(§). )

However,between the initial location X(0, &) = & and
the terminal location X(s, ) ~ x,

(76a)

(76Db)

£~ X(s',8) =x (78)
for almost all p, € {yg},,where

{igts = {ug|X(s, &) ~ x} € {ug} (79)

and 0 < s’ < s. Actually,there exists a Lagrangian
subensemble spread for each s’ € (0,s), which may
be represented by AX(s’, £) in direct analogy with
AX(s, &) of Eq. (66). (This is in direct contrast to
Eulerian ensemble expectations where a spread never
occurs,) The Lagrangian subensemble spread

AX(s’, t) must observe the limits

. sl’i_g}) AX(s’, ) = AX(0,8) =0 (80)

and _
Sl,l_‘rﬂs EX(S’,&) = aX(s,£) = 0. (81)

Thus, E{F[X(s’ , £)]} and E{F[X(s’, £)]} behave alike
as s’ increases from zero because their spreading
behavior is exactly similar;also E{F[X(s’, £)]} be-
haves in this same manner as s’ decreases from s.
{See Figs.2 and 3.) In fact, E{F[X(s", §)]} and
E{F[X(s — s’, £)]} exhibit a sort of spreadwise sym-
metry about s” = s/2. However,since {ug}; C {us}
and AX(s, £) = 0,while AX(s,£) > 0 for all a@,s > 0,
E{F[X(s’, £)]} must spread less rapidly as s’ increa-
ses than E{F[X(s’, §)]},i.e.,
AX(s',8) < aX(s',E), a>0,0<s'=s. (82)
The consequence of this should be that E{F[X(s’, &)1}
setlles down to the same asymptotic form as
E{F[X(s’, £)]t at somewhat smaller values of s’.
Also,there exists a random spread in the terminal
angles at x, which may be represented by Ad(s, £),
when AX(s, ) = 0, while the initial angle 9(£) is con-

stant when AX(0, £) = 0;this distorts the symmetry of
E{F[X(s’, &)]} and E{F[X(s — s, £)]} about s’ = s/2
and means that E{F[X(s — s', £)]} spreads more
rapidly with increasing s — s’ than does E{F[X(s’, )]}
with increasing s’. Thus,the continuity of E{F(X(s’,
£)]} guarantees that E{F{X(s — s’, ¢)]} obtains the
same asymptotic form for reversible paths as
E{F[X(s’,&)]} (although more slowly) if s is large
enough. Therefore, E{F[X(s’, £)]} should obtain the
same asymptotic form as E{F[X(s’, ¢)]}, although
more rapidly, and E{F[X(s’, £)|} should retain this
asymptotic form as long as it remains asymptotically
far from both s’ = 0 and s’ = s. The behavior des-
cribed above is illustrated in two dimensions in Fig.
2, where the bounding area for AX(s, ¢£) is given, and
in Fig. 3, where the bounding area for AX(s, £) is
shown. Note that the whole question of the evaluation
of E{F[X(s’, £)]}, as well as of E{F[X(s, £)]}, has been
reduced to the problem of determining the asymptotic
form of the pertinent stochastic Lagrangian integrals
that results from the Lagrangian spreading.

It will now be shown that the asymptotic evaluations
of Lagrangian ensemble and subensemble stochastic
integrals are exactly similar when $,,S$, are large

envugh. The subensemble analog of Eq. () is

E{ fosl ds’, josz ds, F(S'l)G(Sé)}
= E{_}:l ds} j:z dsy F[X(S;_: 51)]
X G[X(sp, £2)]1X(s1, &) ~ X, X(s, &5) w} (83)

8 ~
= [ dsy [2dsh £61,, b1, 82%), (84)

where the Lagrangian subensemble crosspath corre-
lation

87(3'1,8'2,51,52,!()
= E{F[X(S'l,gl)}G[X(S'z,§2)} tx(spgﬂ =X,
X(sq, £5) ~ X} (85)

should behave like the corresponding full ensemble

AX(s.5)

irer

FIG.2 Lagrangian autopath full ensemble spreading volume.

— = XGLP

AX(s, &)

FIG.3 Lagrangian autopath subensemble spreading
volume,
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correlation of Eq. (6), with respect to its curvilinear
memory lapse behavior,when s) is asymptotically far
from both 0,s; and s; is asymptotically far from both
0,s,. This follows from the material of Sec.I and II
by noting,as discussed above,that the Lagrangian en-
semble and subensemble spreading is exactly similar.
(See Figs.4 and 5.) The methods of Secs.I and II will
now be applied in detail to Eqgs. (85) and (83). In gene-
ral,a tilde will be used to denote a Lagrangian suben-
semble quantity and to distinguish it from the corre-
sponding full ensemble quantity which is not neces-
sarily identical in value;retaining the 6 = (£, — £ | in
the function argument indicates that it is also a cross-
path stochastic quantity.

Consider first the simpler case of the Lagrangian
subensemble autopath correlation g(s_l, s5,&,x%). Sta-
tistical homogeneity reduces this to g(s},s5, £ — x)
and statistical 1sotropy further reduces this to g(s},
sH, 1 E— xl) When s} is asymptotically far from both
0,5, and s, is asymptotically from both 0, s, [which
requires [x — &| >> L, of Eq.(95) when 0 < o << 1],
g(s},s5, £,%) reduces to g(s},s5). In short,

é(spszygax) (Sl,Sz,E x) (86)
= g(sy, 55, &£ —x[) (8T)
~ g(sh,s5). (88)

In contrast to this, it should be observed that although
B(x, £l s) of Eq. (75) reduces to B(x — £|s) for statis-
tical homogeneity, statistical isotropy does not give
B(lx— &[|s) because the orientation of £ — x with
respect to the initial path direction strongly affects
the magnitude of B(x — £|s);for example, as £ — X is
rotated away from the initial path direction with | £ —
x| kept constant,B(x — £|s) declines in value in a sta-
tistically isotropic medium since the measure of
{ug}, decreases. However,statistical isotropy does
permit considerable simplification in the asymptotic
form of B(x — £|s);see Sec.III of Ref. 5.

St

AXs, &)

AX(s,, 5)
52

FIG.4 Lagrangian crosspath full ensemble spreading

volume.

X = /_\'(51»§1)
= E(Sz,gz)

A1 X (510 &)

§2 50

FIG. 5 Lagrangian crosspath subensemble spreading
volume.
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Assuming autopath stochastic invariance, for the sub-
ensemble {u,} in a statistically 1sotr0plc medium,
and reversible paths gives

&(s1585,&,%) = g(0,8,&,x%) (89)
= g0, §,%) (90)
=g 0,,%) (91)
—5=—>0 (92)

in direct analogy with Egs. (10b), (14), (15),and (12},
respectively. Therefore,when §;=8;=s and £, =
&, = E,Eq. (84) can be evaluated in the same manner
as Eq. (18):

$ ’ s [T ] ’
sy [ dsy &(st, 85, 6,%)

= 258, [ do (1 - g)gm’("g”‘) (93)
()]
~ 2sg,L,, (94)

where the Lagrangian integral scale ig,correspond-
ing to the correlation g(o),is defined by

L, = lim fdo( "> ("), (95)
§= o0 gO
considering Eq. (88),and where the intensity factor is
={F(E)G(§)) =go 97)

via Egs. (20b) and (77);f,g is assumed to exist and
cannot be a function of s.
When &, = &,, statistical isotropy gives
g~(s’1,3'2,§1,§2,x)=g7(8’1,8'2,5,§1—x,§2—x) (98)

=§(s’1,sé,6, lgl—xl ’ l§2 h x‘)(gg)

Wg(s’l,sé,g,x) (100)
—555—> 0, (87,85 finite) (101)
~ Flsh,55,0) (102)

[cf Egs. (22)~(25)]. Assume that the path divergence
is negligible over a curvilinear range of several

L (6) [this Lagrangian integral is defined in Eq. (116)]
for all s of interest so that

851,85, 81, 42,%) = £(0,5, &), 5,%) (103)
=£( 0,5, &,£,%) (104)
—550> &0, £,%) (90)
——F (105)

and g(0,S, &, &,,X) is a weak function of S,in direct
analogy with Egs. (26), (28), (14’),and (27), respective-
ly. Therefore, Eq.(84) can be considered in its full
generality by the same procedure that gave Eq. (40):
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o, 2 ~
j;) dSl_L ds,gg(s]_;slzygl’EZ’x)

-§ 25=0 -
5,°5,°5 jo dOL ng(U,S’Epgz,x) (106)
—3505—> 2 fdo (s —0)glo, §,,%) 93"

-~ s ]
= 5183(0,81,£,,&5,%) fol do <1-— s—1>

g~3(0331,§1’§2:x)

§3(0,sl,§1,§2,x)

~ 32 N ‘g
+S~2g3(0,sz,§1,£2,x) ‘/0 d0<l Sz)
g3(0y32;51, §2,X)

§3(0,82,§1,§2,X)
‘-5 -
- _{;z ! do (32 — 8 — U)g4(0,31,82,§1,£2,x)

(107)

~ - 58 84(0,8,,85,0)
0 (G0 [0 S )
fsz 5 g4(0731132’6)_>

53(0,32,5)

+ szg ()] <
(108)

s, 258,004, 06) (109)

_T(ﬁ Zséof,g

. (110)

= ga(é)[sl

The convenient definitions

1 1 /2s-o
s—-o0 ifo

L1(51,85,6) +s5L(s1,55,0)]. (111)

ds £(0,8,&,,,,%)

§3(0,S,§1,§2,X) =

(112)
~ g3(0,s,0) (113a)
—5=0> &0, &,%) (113b)

(these should be only a very weak function of s) and

~ 1
84(0381’52;§1,§27x) = (32 — 8, — 0)

zf dbgo S §1,§2,X)

(114)
~£4(O’s]_182’5) (1153)
Wé-((),g,x) (115b)

(these should be only a very weak function of s, and
s,) give Eq. (107) which goes asymptotically to Eq
(108), where the Lagrangian integral scale Lg(8) cor-
responding to the correlation g4(0,s, £, &,,X),i.e.,

= 1 [0 - “)i—iio—g‘;

I, 95"

(116)

Zt

is assumed to exist, and cannot be a function of s, and
where the intensity factor is
£5(0,5,0) = lim 25(0,5,0)~ 2,(0); (117)
£,(6) represents the curvilinear average of g5(0,s,0)
over the s range of experimental interest and is ana-

logous to g,(6) of Eq. (34). Note that the intensity
factor at s =0 is

= E{F[X(0, §,)1G[X(0, £;)]} (118)
=(F(£))G (&) 2 g,(6) (119)
—550 &0 (96')
—55=>0. (120)

Because of the normalizing presence of g5(0,s,6) in
Eq. (116), it would not be surprising to find that L_(6)
is largely independent of §,as well as of s,for all s
of interest. Furthermore, since

2'3(0,3,6) @
53(0 s,6) ©°0 go

L (6) is probably nearly equal to L for all s of phy-
szcal interest and 6 less than, say, §Lg,1 e.,

(121a)

L) = g, 6 < 31:g. (121p)
It is convenient to define

Li(sy,85,0) = L(6) + fosz_s‘ do%%’()—s,ls’lsj%——’)m (122)
# Ly(s1,55,0) (123)
T L) (116'a)
—55— ig (124)

and -
Lyls1,50,0) = L)~ [* a g———-‘g:(’o‘ig’:’%’)o) (125)
# L(s,55,0) (123)
—=a=> L0 (116')
I (126)

<50 4
(

Equations (122) and (125) give Eq. (111) which is ana-
logous to Eq. (40).

Furthermore, when s’l, ...,s, are all asymptotically
far from 0 and from s,...,s,,respectively,of

X(s,, &) = x,...,X(s,, &) = x,theorems Ia-IIb of
Sec. III should be asymptotically valid for the Lagran-
gian subensemble expectation. Likewise,the central
limit theorem for stochastic Lagrangian functionals
that is cited in Sec.II of Ref. 5 can be assumed valid
for Lagrangian subensemble expectations in the same
sense that it was adopted for full ensemble expecta-
tions. From the preceding discussion, it is apparent
that the results of Sec.IV are also valid for Lagran-
gian subensemble expectations.

1t proves interesting to contrast the behavior of
E{(dX, /ds)(s)} and ((dX;/ds)(x)). Consider a straight
line extendlng in the 1n1t1a1 direction, as indicated by
(dX,/ds)(0), from a point & on the source Sy;all the
paths that cross this line at each point x contribute to
({dXx,/ds)(®)) = 1, where p is statistically isotropic. In
contrast to this, Egs. (57) and (51') yield

dX % 3 " (0)% dx;

=5 () mo) *(0) (127a)
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= 2 )1 - a2sRA] (127)
dX;

—s5 E(O) (128)
dx,

o ), (129)

where Egs. (71), (60a2),and (62) have been employed to
obtain Eq. (127b). In the first situation,{(dX,/ds)(x))
represents the Eulerian ensemble expectation of
(dX;/ds)(x) at each point x on the prescribed path; the
result of unity implies that there exists no net angu-
lar bias at any such x when averaging over {uB} .
Equation (75) shows that many paths from the initial
surface can contribute,at some arc length s,to
({dX,/ds)(x)) . In the second situation

~fdX; ) _ _(dX;

E E (S)( = E?K
represents the approximate contribution at x of all
the paths of arc length s that reach x reach from ¢ €
Sysfrom Eq. (75),it is seen that the weighed summa-
tion of all the E{(dXi /ds)(s)} for all s € [0,®) and for
all & € S, give ((dX,/ds)(x)). Due to the Lagrangian
spreading, E{(dX, /ds)(s)} becomes increasingly smal-
ler than (dX;/ds)(0) as s increases since E{(dX,/ds)(s)
represents the mean x; -axis length per unit arc
length for {;Jﬂ |X(s, £) = x}. In the nonstochastic limit,
the medium becomes uniform and Eq. (129) shows
that the paths X(s, ¢) become straight lines. As an
interesting contrast to Eq. (127b), Eq. (57) yields

ax, | dx, dx,
EluZ5 6)f = T OEO)} = FO),

via Eq. (4'), which means that pdX; /ds is a Fermat
invariant under the operation of taking the Lagrangian
ensemble expectation.

V1. SOME FERMAT EXAMPLES OF SUB-
ENSEMBLE INTENSITY CALCULATIONS

At this point, it is appropriate to consider some
examples of subensemble intensity calculations. Con-
sider the Lagrangian sound-pressure wave over a
continuous u(x)1,7,14:

($)[X(s,8) ~ x (130)

(131)

p[x(s,g)].—_po(g) exp<_%fos%§(_)

s? s
X fo ds" y;;(8") +ik0f0ds’u(s’)>. (132)
Case (1): Assume that the phase factor dominates

in Eq.(132). Then?

PIX(s, 8] =p(s) ~ pol®) eXp(iko [ as, u(slz)>
and
E{p(s )p*(sp)} )

= |po|2Eexp(iko [ " ds) ulsy)

— ik, fosz ds}, p(éé))%(liﬂ)

(133)

~ |E{p(so)} |2 exp[2a23s P, (6)H(6)] (135)
=0 |pol? (136)
(when s, = s, = s,), where
B(s', 5, &1, 45,%) = E{[n(s)) — Efn(s))}]
x [n(sp) — Efn(sy)t 1} (137)
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:P(O: 5,51,52',1‘), (138)
s s -
f(;odsi foodslz P(s1,85,81,85,%)
- s 1
= ZSOPO(O’SO’ §1, £2’x) Lod(’m
y f2so-o S f’(o,S,El,éz,X) (139)
o Po(O,so,£1,§2,x)
~ 254P,(6)A(0) (140)
and
-~ 1 2 =
PO(O,SO,EI, Ez,x) = Ko fo 0 as P(Oysa§1’§2:x) (141)

~ Py(0,s4,0)= B (5). (142)

Equation (139) goes asymptotically to Eq. (140), where

the Lagrangian subensemble crosspath phase integral

scale H(5),

- 2s,= p

HG) = lim [do g [00as 20500y
Sp™® “0 Sp o Py0,5,,0)

is assumed to exist and cannot be a function of s, and
where P, (6) represents the curvilinear average of
Fy(0, s, 8) over the s, range of experimental inter-
est. Therefore,the coefficient of intensity variation
7, can be considered

E{lp(sg)12} — |E{p(sq)} 12

V2= 144
v BITNE (44
~ exp[2a2kgs P, (0)H(6)] — 1 (145)
=~ 202k3s P, (0)H(5) (146)
for
1>> 2a2k3s P, (6)H(). (147)

Equation (146) reduces, in the Eulerian limit,to result
of Mintzer,8

V2 =~ 202k3r [“dp,N(p,), (148)
where

N(p) = (n@n(x + p)), (149)

p = (P +p3 + p3)1/2 (150)

is the separation of the points x and x + p,p; is taken
along the line between the source and the receiver,
and 7 is the source-to-receiver separation. The one-
dimensional correlation function N(p,) is the Eulerian
equivalent of P(g, S, £,,&,,%) in the sense that when
£, > &, and the Lagrangian spreading (see Fig.5H) is
neglected, P(0, S, ¢, , £,,X) reduces to N(p,) with s, =
¥. Furthermore, in the Eulerian limit, Eq. (147) re-
duces to

1> 202k3r fooodplN(pl),

which is analogous to Mintzer's!7 validity condition
for Eq. (148).1 In Eq. (146), B, (5)H(6) replaces [,
dp,N(p;) of Eq. (148). Although these factors are ana-
logous, it should be observed that Eq. (148) is strictly
Eulerian, since »(x) and n(x + p) are along the same
known source-to-receiver path in every realization
g In addition,Mintzer® derived Eq. (148) using a

(151)



APPROACH TO STOCHASTIC LAGRANGIAN INTEGRALS 181

single-scattering assumption which does not consider
the continuous path fluctuations due to the continuous
variation in p(x). However,in one dimension,the
Debye (continuous fluctuation) and Born (single-scat-
tering) pressure wave relations coincide when the
cumulative phase effects are small.1,7

Case (2): Assume that amplitude factor dominates
in Eq. (132). Then?

pX(s,8)] =p(s)
~ _L $ sl s’ " . "
bo® x|~ £ ity Jp 45" usls )>(152)

and
E{p (Sl)P*(sz)}

S
|p0|2Esexp<—— 2 f lds'lf i s1 “’ii(s,i)

—3 [*as foszdsz B (sg)x (153)
~ |E{p(so)} | 2 exp[20253G,(6)T(6)/12]  (154)
> b2 (155)

(when s; = s, = so), Where
Wy 55 (") u(s") = an, ;4 (s”) (156a)

via Eq. (3),
Q(S'i,sg,&pﬁz,x) = E"{[n’“ (sy)— E]’_n,”(srll)}]
2)— E{”, 182} (156b)

(157)

X [n‘ii(s
= Q(O"S,El’ §2,X),

S
Ods fo ds’l’f ds, fszds Q(sy,s5,&1,&5,%)

8
fodsl(so—— s7) f dsy (sg— S3)

XQ( 1932,51’§2, ) (158)
= s3G50, so,gl,gz, )2 oso do
. g 02 Q3 (U SO7§1$§2’X)
><<1 280 28% * 4s )Qg 0, 30,§1’§2,x)
~5s3Q,00) ), (159)
and
[%38 - %0-3(2) - éozso + %0’3]@3(0;30751;52:}{)
= fzs"'o dS[s — 4(S + 0)]
X[ - i2 (S - 0)] (0, S,£1,§2,x) (160)
~ %38@3(0,50;5)- (161)

Equation (158) goes asymptotically to Eq. (159), where
the Lagrangian subensemble crosspath amplitude
integral scale J(5),

. 5 o o2 302>Q3(0,so,6)
J() = S})g& jo do<1 Ts; 253 +E§

’ (162)
is assumed to exist and cannot be a function of s, and
where Q ©®) represents the curvilinear average of
Q3(0 $g,0) over ‘the so range of experimental interest.
Therefore,the coefficient of intensity variation V

@3(0,54,06)’

can be considered:

-, _ E{1pglso)l2} — | E{p(so)} |2
2 = 0To o 163
i |E{p(s)} I? 169
~ exp[2a253Q,(6)J(5)/12] — 1 (164)
~ 20253(§ (6)T(6)/12] (165)
for
1>> 202s3(@,(8)J(6)/12]. (166)
Equation (165) reduces, in the Eulerian limit,to
V2 ~ 2023 i f()”dpl[vzva(p)]p=pl, (167)

which was derived by Bergmann® from the eikonal
and transport equations? via a variational approach.
The one-dimensional correlation function [Vzva(p)]p
is the Eulerian equivalent of §(o, S, £,,&,,%).

VII. CONCLUSION

Thus, the stochastic tools for employing Lagrangian
ensemble and subensemble expectations are,in prac-
tice,the same. The basic stochastic concepts and
assumptions utilized in this study for both Lagrangian
subensemble and full ensemble expectations can now
be summarized as follows:

(i) The central limit theorem for stochastic Lagran-
gian functionals from Sec.II of Ref. 5;

(ii) Eq.(14) of Ref. 5 in which B(x, — £,|s) and
E{F[X(s, t)]} are expressed asymptotmally in terms
of Lagrangian full ensemble and subensemble, respec-
tively, stochastic integrals via the central limit
theorem;

(iii) the consequences of statistical isotropy as dis-
cussed in Sec. III and extended inSec. V, i.e., Theorems
Ja~1Ib and their extension;

(iv) the asymptotic evaluation of Lagrangian stochas-
tic integrals as developed in Secs.I,II,and V,in par-
ticular, Eqgs. (40) and (111).

APPENDIX A: THE WIENER INTEGRAL

Since the completion of Ref. 5,the first author has
found that Eq. (14) of Ref.5 reduces in a natural way
to the corresponding Wiener integral4,18,19 for a
stationary Markov process. Equations (14), (192), (20)
and (27) of Ref.5 give

(F(x )—fdsdeBx—élsE{F s, 0, (A1)

where

— sl — & —m)?/Uy
By — &;1s) = iIfIl s (x(ZnUg..)l/Tm ! ]’ (42)
Uy, = EUX,(s,8) — E{X(s, DX (s, 8) — E{X (s, O]},
(A3)
and
m; = E{X, (s, £)} (Ad)

(no summation on ii),for a statistically isotropic
medium when the Lagrangian spreading matrix [U, ;]
is expressed in terms of its principal axes. Assume
a single initial point n = (¢,7,¢) so that
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F@) = [*dsple;— n, |)EF[X(s, )]}
= E{fowdsp(x.- — n; |8)F[X(s,n)]6[X(s,n) — X]},
where (A5)
B(xi - ﬁi |'s) Ep(xi —n; ls)é(gi - 77,') (A6)

and 5[X(s,n) — x] represents the Lagrangian suben-
semble condition. Define

[P Fx( ]d s
) 3,77 p(x)

—f F[X ,n)—x]p ; —n;1s)ds (A7)
—f F ’17)]5 )—X]
3 exp[— z(x —n;—m)2/Uy ]
% il—=11 (2nUy )1/

via Eq. (A2), so that

(Fx) = E{LwF[X(s, n)]dp(x)s}.

When the continuous path X(s,7) becomes a stationary
Markov processes, it takes on a three-dimensional
zigzag appearance and is not necessarily differenti-
able for each X(s,n) € (— ®,2), Assume that there
exists complete vandomness with respect to changes
in direction (e.g., Brownian motion under the influence
of random impulses in the absence of any kind of sys-
tematic forces and neglecting any particle inertia), so
that m; = 0. The velocity c(s) along X(s, ) is then
constant between the abrupt changes in path direction,

J

(A9)

& — n)2/t)/(at)v/2,
exp[—

F(X s 77) exp[_'

J. AA NEUBERT,

(x“xl)z/(t_ tl)_ (x

J. L. LUMLEY

but changes randomly and discontinuously in magni-
tude with path direction. For such a random process,
it is conceptually easier to first consider Eq. (A8) in
one dimension and then generalize the result to three
dimensions. Even then it is not possible to merely
integrate the one-dimensional form of Eq. (A8) in one
step since X(s) is not known. However,the motion
from 7 to x can be paramatrized by the transit time ¢
which is discretized such that

0=fp<t; <ty <o <t, =t (Al0a)
(where the points ¢,,t,,...,¢,_, divide the time in-
terval [0,¢] into # equal parts of length At = ¢/n),s0
that the curve X(¢) satisfies

n=x(ty) =xg, x()=xy, ..., x(,)=x, 1
x{t,) =x,=x, (Al0b)
where each x; can take on any value (— «,®). It is,

therefore, natural to assume that U; of Eq. (A3) is
proportional to the transit time interval involved,i.e.,

Upilt;—ti-1) =2D(t;— t;_4). (A11)
Since Eq. (A8) will now yield a Wiener process [see
Egs. (1.7) and (1. 4) of Ref. 18],4D represents a diffu-
sion coefficient and it is convenient to choose a system
of units such that D = 1. Thus,as the number of sfeps
n in going from 7 to x is increased, Eq. (A8) yields,
successively, in one dimension

1 U)Z/(tl - to)]

0
_[oo dxlF(x,xl,n)

f_:dxl f_:dsz(x,xz,xl,n)

[ﬂz(t - tl)(tl - to)]l/z

’

» exp[— x— xz)z/(t - tz) - (xz - x1)2/(t2 - tl) - (xl - ﬂ)z/(tl - to)],
[m3( — t)ty — £t — tg)]V2
’ n -—_ . — . 2 s .
SO axy e [T dn,  Flex, . exy,m L el b= %)/~ L)l (A12)

In the limit of » —» ©,Eqs. (A12) reduces to the condi-
tional Wiener 1ntegral of Ref.18: f i x Flx@) [ w0

and X(s,7n) becomes a Wiener process. Note that Eq.
(1.7) of Ref. 18 gives the Lagrangian spreading matrix
for a Wiener process.

APPENDIX B: COMMENTS CONCERNING g,(6)

The factor g,(6) has been introduced in Eq. (31) to re-
place g(0,s 6) which may not be a negligible function
of s because of cumulative spreading effects over
large s. However,g(0,s,6) may vary insignificantly
over the s range of experimental interest [even though
it may be much less than 2,(6) of Eq. (352)].7 There-
fore,ga (6) represents the curvilinear average value
of £(0,s,5) over the s range of experimental interest.
As was pointed out in Sec.II,the s dependence of
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[ﬂ(ti - ti_l)]l/z

g(0,s,5) can result only from the Lagrangian path
spreading. The general situation is illustrated in Fig.
6, where the outer boundaries of the ensemble expect-
ed region of spreading, as represented by aX(s, ¢,)
and AX(s, £,) from Eq. (66),and where the two paths
for a typical realization are shown in two dimensions.
When all the paths are initially perpendicular to the
surface S, Eq. (69) gives the traverse Lagrangian
spreading to be

[aX, (s)]? ~ a2s3A4R, (B1)
for Fermat paths and,on the average, F(s) and G(s)
are separated by 6 = |§; — £,1. Even then,g(0,s,0)
decreases as s; = s = s, increases since F(s) and
G(s) are on different, and generally diverging, paths
in each realization and, therefore,tend to be found
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farther apart than 6 by, on the average,the amount
AX,(s). Thence,

g(0,s,6) ~ g[0,0,6 + aXx,(s)]. (B2)

This is in direct contrast with the analogous autopath
situation where g(o) is independent of AX,(s);note
that

£,0) —5=5g—> &o- (20")

For simplicity, consider the a X, (s) dependence of the

AXG, £)

=== - :

=

axis, &)

FIG.6 Lagrangian crosspath spreading volume,

running intensity factor g(0,S,06) = (0, 2s,6) for s, =
Sy = §;if this is reasonably insensitive to A X,(s) over
a given s range,then,by Eq. (32),2(0,s,5) is even
more insensitive. The scaling factor3 for the result-
ant decrease in correlation (due to path spreading)
with increase in A X,(s) is the Eulerian integral scale
L. of Eq. (21) so that

§(0,sn,6) ~ £[0,0,6 + AX, (sy)]
=2(0,0,[6 + aX,(s,)]

+[aX,(s,)— aX(s)]) (B3)
~ g[0,0,06 + aX,(s;)]
y [1 . AXt(Su)L-; AXt(SI)} (84)

- LX,(s;)— AX (s
%g(o,s,,é) [1* t( ”)‘LG t( 1):13

where 0 << s; < s;;. Thus, (B5)
AX/(s;)— AX(s) £(0,s,,0)— §(0,5,,0)
L, - - 4(0,5,,0)
gives a measure of the relative decrease in correla-
tion as s increases from s; to s, and shows that if

the mean spreading (relative to L) is small, g(0, s, 6)
varies slightly with s € [s,,s,,].

(B6)

* Taken from the doctoral dissertation of J. A. Neubert, “Sound Pro-
pagation in Continuous Stochastic Media,” under the Interdiscipli-
nary Program in Engineering Acoustics, The Pennsylvania State
University, University Park, Pa., 1970.
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SU (n-2) X SU(2) x U(1) Bases for SU(n)*
R.T.Sharp

Department of Physics, McGill Universily, Montveal, Canada
(Received 9 August 1971)

Explicit basis dates for the general IR of SU(n) are defined in the scheme SU(n — 2) X SU(2) x U(1);the approach

makes use of elementary multiplets.

1. INTRODUCTION

Explicit basis states for SU(n), reduced according to
the subgroup SU(n — 1) X U(1), were constructed many
years ago by Gel'fand and Zetlinl; the generator mat-
rix elements for these states were written down in
Ref. 1, and derivations were later given by Baird and
Biedenharn2 and by Nagel and Moshinsky.3

In recent years there has been some interest in the
reduction SU(n) D SU@ — 2) x SU(2) x U(1) especially

for the case » = 6, which is the SU(6) group of par-
ticle physics reduced according to the supermultiplet
scheme.4 Perelomov, Popov, and Malkin5 give a
method based on Young patterns for determining the
SU(4) x SU(2) x U(1) content of an IR of SU(6); Hagen
and Macfarlane® show how to determine the SU(m) X
SU(n) x U(1) content of an IR of SU(m + n) by expand-
ing the character function for the IR as a sum of pro-
ducts of SU(m) and SU(z) characters; more recently
Mickelsson? has achieved the same object by examin-
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farther apart than 6 by, on the average,the amount
AX,(s). Thence,

g(0,s,6) ~ g[0,0,6 + aXx,(s)]. (B2)

This is in direct contrast with the analogous autopath
situation where g(o) is independent of AX,(s);note
that

£,0) —5=5g—> &o- (20")

For simplicity, consider the a X, (s) dependence of the

AXG, £)

=== - :

=

axis, &)

FIG.6 Lagrangian crosspath spreading volume,

running intensity factor g(0,S,06) = (0, 2s,6) for s, =
Sy = §;if this is reasonably insensitive to A X,(s) over
a given s range,then,by Eq. (32),2(0,s,5) is even
more insensitive. The scaling factor3 for the result-
ant decrease in correlation (due to path spreading)
with increase in A X,(s) is the Eulerian integral scale
L. of Eq. (21) so that

§(0,sn,6) ~ £[0,0,6 + AX, (sy)]
=2(0,0,[6 + aX,(s,)]

+[aX,(s,)— aX(s)]) (B3)
~ g[0,0,06 + aX,(s;)]
y [1 . AXt(Su)L-; AXt(SI)} (84)

- LX,(s;)— AX (s
%g(o,s,,é) [1* t( ”)‘LG t( 1):13

where 0 << s; < s;;. Thus, (B5)
AX/(s;)— AX(s) £(0,s,,0)— §(0,5,,0)
L, - - 4(0,5,,0)
gives a measure of the relative decrease in correla-
tion as s increases from s; to s, and shows that if

the mean spreading (relative to L) is small, g(0, s, 6)
varies slightly with s € [s,,s,,].

(B6)
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University, University Park, Pa., 1970.
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SU (n-2) X SU(2) x U(1) Bases for SU(n)*
R.T.Sharp

Department of Physics, McGill Universily, Montveal, Canada
(Received 9 August 1971)

Explicit basis dates for the general IR of SU(n) are defined in the scheme SU(n — 2) X SU(2) x U(1);the approach

makes use of elementary multiplets.

1. INTRODUCTION

Explicit basis states for SU(n), reduced according to
the subgroup SU(n — 1) X U(1), were constructed many
years ago by Gel'fand and Zetlinl; the generator mat-
rix elements for these states were written down in
Ref. 1, and derivations were later given by Baird and
Biedenharn2 and by Nagel and Moshinsky.3

In recent years there has been some interest in the
reduction SU(n) D SU@ — 2) x SU(2) x U(1) especially

for the case » = 6, which is the SU(6) group of par-
ticle physics reduced according to the supermultiplet
scheme.4 Perelomov, Popov, and Malkin5 give a
method based on Young patterns for determining the
SU(4) x SU(2) x U(1) content of an IR of SU(6); Hagen
and Macfarlane® show how to determine the SU(m) X
SU(n) x U(1) content of an IR of SU(m + n) by expand-
ing the character function for the IR as a sum of pro-
ducts of SU(m) and SU(z) characters; more recently
Mickelsson? has achieved the same object by examin-
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ing the related problem of finding the Clebsch~Gor-
dan series for appropriate IR's of SU(m + »). Devi
and Venkatarayudu8 have treated the special case
SU(4) D SU(2) X SU(2) x U(1) by the use of elemen-
tary multiplets; they have not only solved the counting
problem, but specified explicit bases.

The method of elementary multiplets (Devi, Venka-
tarayudu, and Moshinksy's elementary permissible
diagrams8,9) has been used to solve a number of
internal labeling problems.8712 It is based on the
fact that the stretched product of subgroup multiplets
from one or more IR's defines a multiplet of a higher
IR. The labeling problem is solved when it is demon-
strated that all subgroup multiplets of all IR's are
obtained in this way in terms of a finite number of
elementary multiplets; relations connecting the ele-
mentary multiplets make certain combinations of
them redundant in general. For general discussions
of the method see Ref.12, In the next section a com-
plete set of elementary multiplets, with redundant
combinations, is presented for SU{n) D SUn — 2)

X SU(2) X U(1). They define a complete, independent
set of subgroup multiplets for all IR's of SU(xn) and
thus pave the way to the direct calculation of gene-
rator and transformation matrix elements and Cleb-
sch—Gordan coefficients with respect to the basis
states in question.

The SU(n) D SU(n — 2) X SU(2) X U(1) scheme is de-
fined by specifying the subgroup decomposition of

the first FIR (fundamental irreducible representation)
of SU(n). The n states are broken into two sets of

n — 2 and 2, respectively. The first set transforms
according to the first FIR of SU(n — 2) (and is an
SU(2) scalar); the second is an SU(2) doublet (and an
SU(n — 2) scalar). A “hypercharge” quantum num-
ber Z is assigned the value 2/» for the (n — 2)-plet,
—{n — 2)/n for the doublet.

In the SU(6) scheme of particle physics, the six states
of the first FIR are those of three quarks, each of
spin 3; the first four refer to the nonstrange quarks
with spin and isospin each 3, and the other two are
the spin states of the strange quark. In a general
SU(4) x SU(2) x U(1) multiplet of an IR of SU(6), the
SU(4) labels describe the nonstrange quarks—in the
SU(2) x SU(2) decomposition of SU(4), the two SU(2)
subgroups describe their spin and isospin, respec-
tively, in the manner of the Wigner supermultiplet
scheme; the SU(2) labels refer to the spin of the
strange quarks; the U(1) label Z is the total hyper-
charge. Although this scheme is sometimes called
the Wigner supermultiplet decomposition of SU(6), it
should be stressed that it generally assigns nuclear
states to SU(4) multiplets different from those of the
conventional supermultiplet model; thus in SU(6) the
nucleon states, together with the states of the (3, 3)
resonance form a basis for the (300) IR of SU(4)
while in the usual scheme the nucleon states trans-
form according to (100).

The SU(4) D SU(2) X SU(2) X U(1) scheme provides
bases (but not the conventional ones) for the Wigner
supermultiplet nuclear model. Under it, the SU(2)
subgroups describe, respectively, the proton and neu-
tron spins; the “hypercharge” is the 3-component of
isospin.

For n = 3, the scheme reduces to the canonical
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SU(3) D SU(2) X U(1) decomposition applicable to ele-
mentary particles; SU(2) describes isospin, U(1)
hypercharge.

2. ELEMENTARY MULTIPLETS

According to Racah,13 the number of internal (state)
labels required is 3(r; — I;), where 7, and ; are the
order (number of generators) and rank (number of
IR labels, or number of FIR's) of the Group G. If v,
and [, are the corresponding quantities for the sub-
group H, it follows that there are 3(r; — I, — 7, — )
missing labels. In the elementary multiplet method
of defining states, the labels are the exponents of the
powers of the elementary multiplets whose product
defines the subgroup multiplet in question; the labels
provide the IR labels for group and subgroup, plus
the “missing” labels. It follows that the number of
independent elementary multiplets is 3(r; +I,—7, + L.
For the scheme SU(x) O SU(n — 2) X SU(2) X U(1) we
haverg=n2 ~1,l,=n—1l,7,=n2 —dn + 17,1, =

n — 1. Hence there are » — 3 missing labels and

3n — 5 independent elementary multiplets.

We first list the elementary multiplets; they are

found by examining low-lying IR's of SU(n). The
proof that they solve the labeling problem in general
is outlined in the next section. The IR labels are
those of Cartan (the ith label is the number of columns
containing ¢ boxes in the Young diagram of the IR; it
is the number of times the ith FIR occurs in the
stretched product which defines the IR in question);
A;, @, are the Cartan labels for SU(n), SU(n — 2}, res-
pectively; o(= 2j) is the IR label for SU(2); Z is the
hypercharge or U(1) label. The ith fundamental FIR
of SU(n) is that with ;, = 1 and all other 1's equal to
zero. For 1 < i< — 1,it contains three multiplets
of SU(n — 2) X SU(2) x U(1), each of which is an ele-
mentary multiplet. The first, A}, has o, = 1, all other
a's equal to zero, Z = 2i/n;the second, A}, has

@;.1 =1, @ =1,all other a's equal to 0, Z=(2i/n)—1;
the third, A}, has a; , = 1, all other a's equal to zero,
Z = (2i/n) — 2 (A%-2 and A% have all o's equal to zero,
i.e.,are SU(n — 2) X SU(2) scalars). The first and

(n — 1)th FIR's of SU(n) each contain just two (ele-
mentary) multiplets. For the first, A} is as above
with i = 1; A} has o = 1 and all other o's equal to
zero, Z = (2/n) — 1; there is no A}, For the (» — 1)th,
there is no A11; A5 1 has ¢ =1 and all other a's
equal to zero, Z = —(2/n) + 1; A%} is as above with

i =n = 1., Thus there are 3n — 5 elementary multiplets

Aili=1, ...,n—2),

AL (=1, ...,n—1), (1)

Ak (i=2, ...,n—1).
For n = 6, they are (the notation is (XA A 34 4255
Q0,05 4, Z)):
A} = (10000; 100, 0, ),
A} = (10000; 000,1,— %),
A% = (010005 010, 0, 3),
AZ = (01000; 100,1,— }
AZ = (01000; 000, 0,— ),
A$ = (00100; 001, 0,1),
A3 = (00100; 010, 1, 0),

A3 = (00100; 100, 0, — 1),
A% = (00010; 000, 0, %),
A4 = (00010; 001, 1, 5),
), A% =1(00010;010,0,— 3),
A = (00001; 000, 1, %),
A§ = (00001; 001, 0, — ).
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Although the elementary multiplets (1) are correct in
number, they do not, unfortunately, by themselves
solve the labeling problem; certain additional com-
posite elementary factors Aii(l s i<j—2<n—3),
i(n — 2) (n — 3) in number, are required. Ai/ belongs
to the IR of SU(r) with A, = A; =1 and all other i's
equal to zero. As an SU(n — 2) X SU(2) x U(1) mul-
tiplet, it has o, ; = %y = =1 and all other a's equal
to zero (A1J has o; = 1 and all other a's equal to
zero; Ai =1 has o;_; = 1 and all other a’s equal to
zero; Al 71 has all a's equal to zero); its hypercharge
is Z = 2(i +j —n)/n.

The Ai/ are of course not independent of the A1 2,3
They satisfy relations of the form (i <k <j)

a AIAE + a,ARA) + a ARAY = 0, (2)

where a,,a,,a, are nonzero constants. In (2) if

i =k —1,At should be replaced by A{A% and simi-
larly for Akf if# =j — 1. In addition, the Ail satisfy
relations among themselves of the form (i<k<j<h)

b AtIARE + b, AiRATE + b JATRAR = 0 (3)

with nonzero b's. If i =k ~1,k=j—1l,orj=h—1
then Ai* should be replaced AjA%, etc. Equations (2)
and (3) can be used to express the first term on the
left-hand side in terms of the other two; the elimina-
ted terms must be regarded as redundant combina-
tions of elementary multiplets, We may say that Ai
is incompatible with A% for ¢ < k <j and with A** if
i<k<j<hork<i<h<j;incompatible pairs
must not appear together for the purpose of forming
higher multiplets,

For SU(6) the composite elementary multiplets are
A13 = (10100; 010; 0; — 3),
AlS5 = (10001; 000; 0; 0),
A25 = (1001; 100; 0; 3),

Al4 = (10010; 001; 0; — %),
A24 = (01010; 101; 0; 0),
A35 = (00101; 010; 0; 2).

The following pairs of elementary factors are incom-~
patible: A13 with A3, A24 A25;A14 with A2, A3, A25,
A35; A15 with A%, A3 A4; A24 with A%,A352A2?5 with
A3, A3; A35 with AZ.

The adjoint IR of SU(n), by which the generators
transform, is (10 - -+ 01}, Its SU(n — 2) X SU(2) X U(1)
multiplets are defined by the elementary multiplet
products AJA%L, AlA%1, Aln-1 AlAg-1 AlA%"1 In
such products all the quantum numbers are additive
so we find the subgroup multiplets (10 --- 01,0, 0),
0+ 0;2;0),(0--- 0;0;0),(10--- 0;1;1),(0 -+ 01;
1;— 1). Interpreting them as generators, we note that
the first two multiplets comprise the generators of
SU(n — 2) and SU(2), respectively; the third, an

SU(n — 2) X SU(2) scalar, is the U(1) generator, pro-
portional to the hypercharge Z. The other two mul-
tiplets consist of the generators which link different
subgroup multiplets in the general IR of SU(n). It
would be of interest to work out their reduced matrix
elements in the general case, Our results reduce to
those of Devi and Venkatarayudu8 in the special case
n =4,

x SU@) x UQ@)
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3. JUSTIFICATION OF SCHEME

The set of elementary multiplets for SU(n) D SU(n — 2)
X SU(2) X U(1) and their compatibility rules are re-
markably similar to those for Sp(2n) O Sp(2n — 2} X
SU(2).11 Since the justification of their validity is for-
mally also much the same, it is not reproduced here
in full. Only the differences are pointed out, which

are chiefly in the interpretation of the symbols.

According to Weyl14 the characters of the IR's of
SU(n) are (see also Ref. 6)

X(lla"”ln-l): o

1“ l1+n—2
’ (4)
.lpln_l... p“ 2
where
n
l,-=<Z)A7> —i+1=1F—n+1;
=i

1V is Weyl's [; P, (¢, ..., €,) is defined as the coef-
ficient of 27 in the expansion

n (o]

I (1 —¢2)"1= 2 Pla)zt.

i=1 1=

Because of the unimodular condition, the € are not
independent but satisfy ¢, = 1.

To effect the SU(n — 2) X SU(2} X U(1) reduction, it is
convenient to write
€ = €'Z(”'2)Z/”€_1, €1 = €3 (n-2)Z/n€

n

g =¢e3é  i=1,...,n—2.

Then it is not hard to show that

i
P, = 2 pP 5@ (5)
a=0

where p/(¢) and P/ (€}, ...,¢€, 5) are the P appro-
priate to SU(2) and SU(n — 2), respectively. Equations
(4) and (5) are the analogs of Egs.(3.5, 8) of Ref.11.

The proof that the conjectured elementary multiplets
give the correct subgroup content proceeds by induc-
tion. With the assumption that they are correct for
IR's with A, = 0,7 > m, it can be shown with the help
of (4) and (5) that they continue to give the correct
subgroup multiplets when A, is increased by unity.
Since the proof corresponds line by line to that for
Sp(2n) D Sp(2n — 2) X $p(2), we refer the reader to
Ref. 11 for the details. The only further difference is
that the determinants which vanish here, in analogy
with (3.12) of Ref. 11, are those of the form

Pll Pll+n—2

P v P
Ipa1 Ipytn-2

withl+n—-2=21,7i=1,...,n~1,

* Supported by the National Research Council of Canada,
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The asymptotic behavior at large times for certain dynamical systems arising in the Hamiltonian formulation of
classical mechanics is investigated. It is shown that for potentials which die out sufficiently fast at large dis-
tances the unbounded states of the system are asymptotically free, This result complements the corresponding
result for quantum mechanical systems, and is obtained by analogous methods. In addition, the existence, differ-
entiability, and asymptotic completeness of the associated wave mappings is established under appropriate

further assumptions by classical methods,

In this paper, we investigate the asymptotic behavior
at large times of those dynamical systems arising in
the Hamiltonian formulation of classical mechanics.
For such systems, we show quite generally that for
potentials which die out sufficiently fast at large dis-
tances, the unbound states of the system are asymp-
totically free. This result parallels the correspond-
ing result for the corresponding systems of quantum
mechanics, first obtained by J. M. Cook! and is
obtained here by analogous methods. In particular,
we make use of the increasingly familiar device of
converting a nonlinear problem to a linear one by
passing from the solution manifold to a suitably
chosen function space over the manifold.

1. PRELIMINARIES

By a classical system we meana classical mechanical
system consisting of a finite number N of point masses
moving inathree-dimensional Euclidean space accor-
ding to the laws of classical mechanics.2 At any in-
stant of time, the state of the system is completely de-
termined by specifying a suitable set of canonical co-
ordinates, consisting of the positions x; and the conju-
gate momentay, of the individual point masses, These
coordinates then locate a point (x, y) in the phase space
E,, of 2n dimensions, where 2n = 6N.

The development of the system in time is completely
determined by specifying an everywhere continuously
differentiable Hamiltonian function H(x{, *+, x,,¥4,
«++,3,) = H(x,y) of these canonical variables, and im-
posing the Hamiltonian equations of motion:

dx;, oH dy; oH _

T T A s rralia et 121’2}“',”
dt oy, dt 3x;

Every solution (x(¢), y(¢£)) of these equations of motion
starting from a prescribed initial point (x,y) = (x(0),
y(0)) determines a trajectory of the system in the
phase space. Moreover, we know that the motion w(#):
E,, — E,, of the phase space given by

(1.1)

w(t)(x,y) = (x(1), y(1) (1.2)
is defined and continuously differentiable in both (x, y)
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and {, and preserves the volume element of the phase
space E,, for each .2

The derivative w’(t) = (d/df) w(t) of the motion w(¢)
then assigns to each point (x,y) in E,, a tangent vec-
for w’(t}x,y), giving the direction at (x(f), y(#)) of the
motion along the trajectory starting from (x,y). The
tangent vector is readily computed from the equations
of motion (1.1), and is found to be

WD) (xy) = & &0,50) = @i, v, (1.3
where (u, v) denotes the tangent vector field whose
components are given by

3H oH

ui-—-a—y—i, Y= - t=1

, 1,4
- (1.4)

o
It is known that «'(¢) (x, y) depends continuously upon
both (x, y) and ¢, and that w(?) (x, y) may be recovered
from w’(#) (x, y) by performing a quadrature:

w(f) (x,y) = (x,y) + fot w'(7) (x, y)d7. (1.5)

The motion w(?) induces a covariant motion w,(¢):
ColE,,) = €4(E,,) on the space of all continuous func-
tions with compact support on E,,. This induced mo-
tion is defined by

w () f(x,y) = flwl=1) (x,¥). (1.6)
It is clear from the definition that w,(¢) f is linear in
f, and depends continuously upon both f (with the topo-
logy of uniform convergence) and . Moreover, since
w(t) preserves the volume element in £, , it follows
that w,(#) preserves the £, norm | [, in €y(E,,), and
hence admits by uniform continuity an isometric ex-
tension W(f) to each of the spaces £p(E2n), 1< p<oo,
and to the space C, (E,,), the closure of €,(E,, ) in
£,.(E,,). The operators W(¢), so defined, form for
each fixed p a strongly continuous one-parameter
group of linear isometries of £,(E,,).

If f e Cy(E,,) happens to be a continuously differen-
tiable function, then w (¢} f is continuously differenti-
able in £, The derivative w,'(f) = (d/dt)w,(t) then as-
signs to the differentiable function f a continuous
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chosen function space over the manifold.

1. PRELIMINARIES

By a classical system we meana classical mechanical
system consisting of a finite number N of point masses
moving inathree-dimensional Euclidean space accor-
ding to the laws of classical mechanics.2 At any in-
stant of time, the state of the system is completely de-
termined by specifying a suitable set of canonical co-
ordinates, consisting of the positions x; and the conju-
gate momentay, of the individual point masses, These
coordinates then locate a point (x, y) in the phase space
E,, of 2n dimensions, where 2n = 6N.

The development of the system in time is completely
determined by specifying an everywhere continuously
differentiable Hamiltonian function H(x{, *+, x,,¥4,
«++,3,) = H(x,y) of these canonical variables, and im-
posing the Hamiltonian equations of motion:

dx;, oH dy; oH _

T T A s rralia et 121’2}“',”
dt oy, dt 3x;

Every solution (x(¢), y(¢£)) of these equations of motion
starting from a prescribed initial point (x,y) = (x(0),
y(0)) determines a trajectory of the system in the
phase space. Moreover, we know that the motion w(#):
E,, — E,, of the phase space given by

(1.1)

w(t)(x,y) = (x(1), y(1) (1.2)
is defined and continuously differentiable in both (x, y)
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and {, and preserves the volume element of the phase
space E,, for each .2

The derivative w’(t) = (d/df) w(t) of the motion w(¢)
then assigns to each point (x,y) in E,, a tangent vec-
for w’(t}x,y), giving the direction at (x(f), y(#)) of the
motion along the trajectory starting from (x,y). The
tangent vector is readily computed from the equations
of motion (1.1), and is found to be

WD) (xy) = & &0,50) = @i, v, (1.3
where (u, v) denotes the tangent vector field whose
components are given by

3H oH

ui-—-a—y—i, Y= - t=1

, 1,4
- (1.4)

o
It is known that «'(¢) (x, y) depends continuously upon
both (x, y) and ¢, and that w(?) (x, y) may be recovered
from w’(#) (x, y) by performing a quadrature:

w(f) (x,y) = (x,y) + fot w'(7) (x, y)d7. (1.5)

The motion w(?) induces a covariant motion w,(¢):
ColE,,) = €4(E,,) on the space of all continuous func-
tions with compact support on E,,. This induced mo-
tion is defined by

w () f(x,y) = flwl=1) (x,¥). (1.6)
It is clear from the definition that w,(¢) f is linear in
f, and depends continuously upon both f (with the topo-
logy of uniform convergence) and . Moreover, since
w(t) preserves the volume element in £, , it follows
that w,(#) preserves the £, norm | [, in €y(E,,), and
hence admits by uniform continuity an isometric ex-
tension W(f) to each of the spaces £p(E2n), 1< p<oo,
and to the space C, (E,,), the closure of €,(E,, ) in
£,.(E,,). The operators W(¢), so defined, form for
each fixed p a strongly continuous one-parameter
group of linear isometries of £,(E,,).

If f e Cy(E,,) happens to be a continuously differen-
tiable function, then w (¢} f is continuously differenti-
able in £, The derivative w,'(f) = (d/dt)w,(t) then as-
signs to the differentiable function f a continuous
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function w,'(f) f according to the formula

w ' (Dfx,y) = (% fxE=0,y— D)

OH 3f OH af .

where { , } denotes the usual Poisson bracket.? It
is a straightforward matter to show that this deriva-
tive, evaluated at ¢ = 0, is essentially the generator of
the one-parametfer group of isometries W(t) in each
of the £p spaces over E, . Specifically, we have

W(t) = expiLt (1.8)
with the generator L given by
L=+dH,-} (1.9)

We shall refer to this operator L as the Liouvilie
operator of the system, The Liouville operator de-
termines the motion of the function spaces over the
phase space of the system,

2. THE MOTION OF NONINTERACTING PARTICLES

In this section we shall obtain a precise description
of the various operators introduced in the preceding
section under the assumption that the Hamiitonian
function H is independent of the position coordinates
of the phase space, This assumption holds for the
Hamiltonian functions describing every system of
noninteracting particles, as well as those systems re-
ducible to such systems through a suitable canonical
transformation,

We shall assume, then, that H(x, y) is everywhere
twice continuously differentiable and that
3H _ .
B_E =0, 1=i=mn,
Under these assumptions, the equations of motion be-
come

(2.1)

57 x,y) = (u, 0), (2.2)
where
ui_—_ui(y):%}g, (2.3)

The solutions of these equations of motion then all
have the form
w(t) (%, y) = (x(), y(0) = (x + ut, y). (2.4)

It follows that the motion w*({) induced in € (£, ,) has
the form

wy () f)x,y) = f(x —ut,y), (2.5
while the Liouville operator L has the form
n
o HH et i w
L_+z{H,-}_+zi}::iuiaxi, (2.6)

In order to analyze the structure of L, we need only
introduce the Fourier transform F in the first » co-
ordinates x,. If f € Cy(F ), then

(FA)(s,y) = (am) /2 [ expilex)f(x,y)dx. (2.7

Then from (2. 6) we have

(FLF1f)(k,y) = — (u*k) f(k, y). (2.8)
Thus we see that L is equivalent, via the Fourier
transform F,to the operation of multiplication by the
real-valued function — (uek).

It follows now by standard methods of spectral analy-
sis that the spectrum of L in £,(E,,) consists pre-
cisely of all real numbers in the range of — (u*k) as
the u; take on all values of the form 3H/dy, and the k,
range over all real numbers. We conclude in this case
that the spectral measure of L is absolutely contin-
uous and that the spectrum of L consists of the whole
real line,

3. THE MOTION OF INTERACTING PARTICLES

In this section we shall investigate the structure of
the various operators introduced inSec.1 under the
assumption that the Hamiltonian can be expressed as
the sum of two terms, one of which satisfies the re-
quirements of Sec, 2, and the other of which dies out
in a suitable sense at large distances from the origin
in the phase space, Under these assumptions, the
first term dominates the motion at large distances
from the origin, and the analysis of Sec.2 can be ex-
pected to apply. The behavior of the motion near the
origin is then determined by following the motion in
from large distances. This procedure has already
been used successfully in analyzing scattering prob-
lems in quantum mechanics; we have only to adapt
those techniques to the present problem,1,3

We shall assume, then, that the Hamiltonian function
has the following form:

H=H,+V, (3.1)

where H, is everywhere twice continuously differenti-
able and satisfies

(3.2)

and V is also everywhere twice continuously differen-
tiable, and satisfies

|grad V(x,y)| = const [x[-2-n (3.3)
for some n > 0. For convenience we shall also as-

sume that the gradient of H, vanishes only on a set
Z, of measure zero in E, .

We now fix a value of p, 1 = p < © and consider the
motions Wy(¢) and W(t) induced on £,(E,,) by the
Hamiltonians H, and H, respectively, We form the
tvansition opevators

W(s, t) = Wy(— s)W(s — )Wy(1). (3.4)
These operators describe the relative motion of the
space £, (E,,) obtained by moving the system accord-
ing to H,, for time {, then according to H for time (s-f)
and then according to H, again for time —s, These
operators obviously are isometries, and satisfy the
following relations,

!

W(s,s) =1,

Wir, s)W(s, f) = W(r, t). 3.9
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Of particular interest is the behavior of these opera-
tors at { > — 0,

Lemma 3.1: Suppose that lim W(s, ) as { > — @
converges strongly to the operator W(s,— ®©), Then
W(s,— «) is an isometry for each s, and satisfies

W(s,— ©) = Wyl s)W(0,— @)W (+ s),

(3.6)

LW(0,— ®), = W(0,— w)L,. (8.7)

Proof: We know that strong limits of isometries
are always isometries. From the definition (3. 4) we
obtain immediately the identities

Wo(s)W(s,t + s) = WO, }W(s)

= W(s)W(0,t + s). (3.8)
the first of these identities leads to (3.6) as { > — ,
while the second leads to

W(s)W(0,— x) = W(0, — ®)}W,(s), {3.9)
which then leads to (3, 7) by standard operator
methods,

1t follows from this Lemma that W_ = W(0, — ®) is an
isometry which effects a similarity between L and
L. Tt does not follow from this Lemma that the
similarity is invertible, i.e., that the range of W_ is
all of £,(E,,). In general, we know only that the range
of W_ reduces L, and that the restriction of L to the
range of W_ is isometrically equivalent with L.

Thus we are led to investigate the convergence of the
transition operators as { - — @,

A convergence criterion useful for this purpose was

developed by Cook3 in his study of the corresponding
problem in quantum mechanics, This criterion has a
far wider scope, however, and applies to the present

situation as well,

We first introduce the difference operator M, defined
by
L=Ly+M (3.10)
and in terms of M we introduce the one-parameter
family M({) defined by
Mty = Wo(=OMWy(D). (3.11)
Lemma 3.2: Let D be any set of functions dense
in £,(E,,) on which Ly and L are both defined, and

which is invariant under W,(t) for all ¢, Suppose that
for each fin D we have

0 Mo, dt < e, (3.12)
e
Then lim W(s, t) as { > — «© converges strongly in
.,(’,p(EZn), for each s, and on D we have
Wis,—) =T+ [ Wls, OM(Dat. (3.13)

Proof: According to (3. 6) it suffices to consider

the case s = 0, The hypotheses imply that W(0, 1)/

is strongly continuously differentiable in ¢ for all f

in D, and we have
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L WO, 1)f = — iWl= 1L — LYW, f

=— WO, M) f. (3.14)

Integrating both sides from ¢ < 0 to 0, we obtain

F—w,t)f=~1i [Sw(0,r)m(r)fdr. (3.15)
Hence we have, for ¢/ < ¢” <0,
W0, ') f— WO, ") f=1i [ WO, T)M(r)fdr.  (3.16)

It follows that
two, &7 — wio, 1, = [ Iwo, ) M@ f1 dr

¥

=/, “M(T)f”pdT.' (3.17)

Now if (3. 12) holds, then the expressionin (3, 17) tends
to zero as ¢* and ¢’ tend to — ©, This means that

W(0, t) f converges strongly as ¢ — — «, If the set D of
such f is dense in £,(E, ), then our conclusion follows
from the uniform continuity of W(0, {) by the Banach-
Steinhaus theorem,

Theorvem 3.3: Suppose that H, and V satisfy the
conditions (3. 2) and (3. 3), respectively, Then lim
W(s, 1) as t — — © converges strongly to an isometry
W satisfying the relations (3. 6) and (3.7).

Proof: Let D be the set of all everywhere continu-
ously differentiable functions whose support is com-
pact and does not intersect the manifold Z; on which
the gradient of H, vanishes, Then it is clear from
(1.9) that both L, and L are defined on D, and from
(2. 5) that D is invariant under W(¢). Moreover, it is
clear that D is dense in £,(E,,), 1 = p<w, provided
that the manifold Z, on wﬁich the gradient of H, vani-
shes has measure zero in £,,, which we are here as-
suming, It remains to show that (3, 12) holds for all f
in D,

Now from the definitions of L and L, it follows that
for any f in D we have

Mf= Lf— Lgf
+ il f} — d{H,, f}
+ iV, 1},

where V = H — H,. From (3.11) and (2, 5) it follows
that

i

(3.18)

Il

3V AWyt BV

MWt f = dV, Wold) S}
. AV WD f
:zzgz 5%, T aw 3(3)',- . (3.19)

Hence we have

w71, = I lgrad v| Igrad w511,

= {grad V)W, ()x)ll, lgrad (wo (DA ,, (3.20)

where x is the characteristic function of the (compact)
support of /.

Now we observe that

AW (1)

% (3.21)

af
(x,y) =53 &—uet,y),
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while
AWt f af
——?30—).’_-_ (x,y) =3y (x — “ot,Y)

af dug
— 355 (E—u5t,) ¥ t. (3.22)
It follows that

ligrad W(A)f1l, = const(1 + |¢}) llgrad f1l,.  (3.23)

Moreover, if we choose numbers » and R such that
f{(x,y) vanishes whenever |x| >R, ly| > R and
lgrad H,| < r, then clearly we have
lgrad V(W (x|, = W, d(grad V)y i,
= sup {l(grad V)(x + uyt,y): |xl =R, |yl =R,
lugl = 7]
= sup {const |x +uytl=2-7: |x| = R,

lyl =R, !uoi =7}, (3.24)

But if |x| = R, |yl =R, lu,| = », then clearly for
large ‘t[,

Ix +ugt! = lugl lel — Ixl = #[t] — R, (3.25)
It follows that for large |¢!,
lgrad vwy(Dx ll, =< const(rlti—R)2n,  (3,26)
Combining (3. 23) and (3. 26) we find
Mm@ 111, = lMwo(a) £,
= const(1 + |t])(rl¢2|—R) 2 llgrad 7ll,,  (3.27)

where the constant depends only on H; and V. Thus
we see that [M(¢) f||, satisfies the condition (3. 12) for
allp, 1< p=oo, andphence that W(s, t) f converges
strongly in the £, norm as ¢ - — « for all fin D,

We have already noted that D is dense in £,(E,,) for
1= p <o, When p = x however, this is no longer so,
It is easy to see, though, that the closure of D in
£,(E,,) is the subspace € (E,,~Z,), consisting of all
everywhere continuous functions which vanish at ®
and on the manifold Z, of zeros of grad H,.

Thus we have established the existence of the wave
operators W(s,— ©) with the properties (3. 6) and
(3.7) in each of the spaces £,(E,, ), 1 = p <, and in
the space C (E,,-Z).

If the measure of the zero set Z, is positive in E,,
then our results hold only for the subspaces £,(E,,-
Z4), now no longer dense in JZP(Ezn). On the comple-
mentary subspaces £,(Z,), the operator W,(¢) re-
duces to the identity and the wave operators exist in
the sense of strong convergence only if W(¢} also re-
duces to the identity, i.e., only if # as well as H,
vanishes on Z,.

Now we recall that the transition operators W(s, f)
acting on €y(E,,) are induced by transition mappings
w(t, s) acting on E,,, where

wlt, 8) = wyl— Hw(t — shwy(s). (3.28)

It is therefore tempting to conjecture that the wave

operators W(s, —x)are similarly induced by mappings
of the form w(— ©, s}, which are limits in a suitable
sense of the transition mappings w(¢, s) as t » — 0,
Our next result makes this conjecture precise,

Theovem 3.4: Suppose that H; and V satisfy the
conditions (3. 2) and (3. 3), respectively. Then the
transition mappings w(?, s) defined by (3. 28) converge
pointwise on an open subset S_of E,, as { > —w,
The limit mappings w(— ©, s) map this open subset
S continuously onto E,, — Zy, and induce the wave
operators W(s,—«) on C{E,, — Z,).

Proof: We fix s and consider the transition opera-
tor W(s, £): @ (E,, — Z,) > €,(E,,). The adjoint
operator W(s, )*: € (E,, — Z)* « € (E,,)*, then
maps the adjoint space G, (E,,)*, consisting of all
finite Borel measures on £, ,into the adjoint space
ColE g, — Zy)*, consisting of all finite Borel measures
on E,, — Z,. Since W(s, t) is isometric into, we know
that W(s, £)* is continuous onto, Moreover, since
W(s, !} converges strongly on € (E, — Z,) to
W(s,~ »), we know that if j is any measure on E,,
and f any function in @ (E,, — Z,), then W(s, /*i{’F)
converges to W(s, — ©o)*u( f},

Now if p is any measure on £,, which is multiplica-
tive, in the sense that p( fz) = pl fulg), then W(s, £)*u
is also multiplicative, and hence W(s,— «©)*u is also
multiplicative, This conclusion follows immediately
from the fact that the transition operators W(s, t),
and hence the wave operators W(s,— ), all preserve
products in € (E,,), and hence (W(s, )*u)(fg) =
wWw(s, ) fe)) = wW(s, t) fW(s, t)g) =

wWw(s, t) HuW(s, tg) = (W(s, *w( S HW(s *p)g).

But the only multiplicative measures on £,, — Z are
the unit point measures and the zero measure,* We
concluded, therefore, that if g is a point measure on
E,,,then W(s, #}*u is either a point measure on

E,, — Zg or else vanishes on € (E,, — Z,). The
same holds true for W(s,— ®©)*u, If we now associate
with the point (x,y) in E,,, the point measure u(x,y)
in €, (E,,)* and observe that W(s, )*u(x, y) is then
associated with w(¢, s)(x, y), then we see that

w(t, s)(x, y) either converges to a point in £,, — Z,
or else eventually leaves and remains outside of
every compact subset of E,, — Z,,as t = — ©, gince
lim flw(s, s)(x,v)) as ¢ = — «© either = f{w(— =, s)
(x,y)) or else = 0 for all functions fin C(E,, — Z,).

In order to distinguish between the two possibilities,
we note that if lim f{w(¢, s)x,y) = 0 as { = — © for all
Fin € (E,, — Z,),then lim W(s, t) f(x,y) = W(s,— ©)
fx,y)=0ast->—wforall fin€C _(E, — Z,).
Hence if we define S_ as the complement of the closed
set in £,, where all functions of the form W(s,— ©)f
vanish, then we see that lim w(t, s)(x,y) as t »—®©
converges to a point in E,, — Z, if (x,y) € S_, and
eventually leaves every compact subset of E,, — Z,
otherwise,

Hence lim w(t, s)(x,y) as ¢t - — © converges to a point
w{— o, s)x,y)in E,, —Z, (in the topology of E, )

if (x,y) lies in S_ and does not define w(— w0, s)(x,y)
otherwise, It is clear that this limit mapping

w(— %, s) is continuous and onto from S_ to £,, — Z,,
but we cannot conclude that it is one to one.

We can, however, conclude the following:

J. Math. Phys., Vol. 13,No, 2, February 1972



190

Covollary 3.5; If K is any compact subset of E, —

Z,, then w(— =, s)~1 (K) is a compact subset of S_ of
the same measure,

Proof: Choose a function f € C4(E,, — Z,) such
that 0= f=1onk,, — Z,,and f= 1 on K, Then for
all ¢, W(s, t)f has compact support, and for |¢| suffi-
ciently large we know that [|W(s,— ) f — W(s, t) fli, <
4. It follows that the set K, = {(x,y): W(s,— %) f(x,y)
= 1} is contained in the set K, = {(x,y):

W(s, t) f(x,y) > 5} for all sufficiently large |#|,and K,
is compact. Since w(— ©, s)-1 (K) is contained in K,
it is also contained in K, and hence is compact,

Now let g be the characteristic function of K, and note
that W(s,— ©)g is then the characteristic function of
w(— o, s)"1 (K). Since W(s, — ©) is an isometry, we
have

pao(s, — ©)1K) = ||W(s,— ©)gll,
= lglly = wK)
as required,

If we know in addition that the mapping w(— «, s) is
continuously differentiable, then we can conclude that
the Jacobian is nonzero, and hence the mapping

w{— ©, s} is nonsingular, The differentiability of
w(— 0, s) will be established in the next section,

We remark here that the set S_ is invariant under

the motion w(#), In fact, (x,y) € E,, —S_ ifand only if
w(0,— ©) f(x,y) = 0 for all f € C(E,, — Z,),and
hence if and only if W(0,— ©)W,() f(x,¥) =

W()W(0,— ®) f(x, y) = W(0,— @) f(w(t)(x,y)) = 0 for
all f € CE,, — Z,), 1.e.,if and only if w({)(x,y) €
E,, —S_.

In problems of physical interest the points in the set
S_ describe the unbound states of the system,i.e,, the
states which behave asymptotically like noninteracting
states as { > — ©, To show this, it suffices to show
that as ¢ = 0, w(t)(xy,y1) ~wy )&y, ¥,) for all

(xp Y1) € S_ and (Xoa YQ) = w(— o, s)(xl,yl).

Theovem 3.5: If Hy and V satisfy (3.2) and (3.3},
respectively, with n > 0, then as { » — ©,

lw(£)(®y,¥1) — wolt)(Xg, ¥o) | = const [¢11-w2  (3,29)

for all (x,,y;) € S and (xy, o) = wl— ©, 0}(x,,y,).

Proof: Fix ¢ € CylE,, — Z,) so that ¢ is twice
continuously differentiable, 0 =< ¢(x,y) = 1,and for
some § > 0,

o(x,y)

(1= & y) — (x,70)12, 1 16x,y) = (x0,¥0)] =6

if 1(x,y) — (x5, 70)] >0
(3.30)

Then we know that if o(x,y) =1 —€2=1—62,we
necessarily have |(x,y) — (x4, ¥,)| = e.

Tler— g2,

Now put ¢ = W_g, and note that
Wo(+ Dol (1)(x,, ¥o)) = (x4, 50) = 1 (3.31)
and
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Wi w(t)(xy, y,)) = ¥(x;y,) = lxg,¥,) = 1. (3.32)

Hence if

Iw(+ 0w — wy(+0ell, < const [¢]-1, (3.33)
then
W(+ WA (8)(xy, ¥,)) — Wo+olw(t)x,, y,))

=1 — @lwo{—w(t)(x,,y,)) < const tl-n  (3.34)

from which we conclude that, for |¢| sufficiently large,

lwo(—w(t)(x,,¥y) = (&g, )| < const |¢1-1/2, (3. 35)

To obtain (3. 33), we use (3.27):

Iw(+ W —~wol+tel,
= [W(0,— ©)p — W)Wy (+1)ell,
< [ IM@)elar

= const |t|"7 < 52 for |¢] large. (3.36)

It follows that we have, for all sufficiently large |¢|,
Lo o(—Dw()(xy, 1) — (%o, ¥o)! = const |¢l-71/2, (3,37)

Finally, we recall that lwy(8)(x, y) — wo(t)(x’, y)
< const || |(&x,y) — (x’,y")!, from which

iw(t)(xl,yl) — wo(i)(xo,yo)l < const |¢11-1/2  (3,38)

as required,

We are now free to define W(0,— ) f for any mea-~
surable function fon E,, — Z, by the formula
w0, — ©) f(x,y) = flw(—©,0)x,y)), x,yec8. (3.39)
W(0,— ) f is then a measurable function on S.. In
particular, if f is a constant of the (noninteracting)
motion determined by H,, then W(0,— »)f is a con-
stant of the (interacting) motion determined by H,
since W(0, — ) fw(t)(x,y)) = flw(— 2, 0w(t)(x,y)) =
Flwo(Dw(—©, 0)(x,y)) = f(w(— ©, 0)(x,y)) = W(0,— »)
f{x,y). Now any function of the momentum coordin-
ates alone is a constant of the noninteraction motion,
and in fact such functions form a complete set, It
follows that W(0,— ) f is then a consgtant of the in-
teracting motion for all such f, and, when w(— », 0) is
nonsingular, such functions form a complete set for
allintereacting motionsinS_. In particular, we have
W(0, — ©)H, = H.

4, DIFFERENTIABILITY

In this section we shall prove that the mapping

w(~-2, 0) defined in the last section is differentiable,
and hence nonsingular, For this purpose it will suf-
fice to show that the Jacobian matrix J(z, 0) of the map-
ping w(¢, 0) converges uniformly on compact subsets

of S_asf{—»—w,

We assume again that H = H, + V where Hy and V
satisfy (3. 2) and (3. 3), respectively, and in addition V
is assumed to be (m + 1)-fold continuously differenti-
able, and such that

iD*V(x, y)! < const(lx|-#1-n), (4.1)
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where D*V denotes any k-fold derivative of V, k= m
+1, n> 0.

We begin by writing for the motion w({),

3t = I — qa o,

where, to ease the notational burden, we have put

(4.2)

oyt 2y(f)
<>-—‘r% 2230 = 35

If J,(t) is the Jacobian matrix of w,(1) and J(¢, s) of
w(t, s), then evidently J(¢, s) = Jo(wt)J(t - s)Jo(s)

Now from Sec. 2 we know that wy{1)(x,y) = (x + uyt,y),
and hence
du
( 1 ayo t)
J,(t) = , 4,3
0 0 1 (4.3)

where u, = aHO/ay. The time dependence of I {t) is
given by

0 o
2 3,(0) = Ag =( v > (4.4)
0 0
From Sec. 3 we know that w{(#)(x,y) = {x{f), y(#)), where
(x(0), y(1)) = (x(0), y(0)) + [ (x(7),y
= (x(0}, y(0)) + fo (a_y(ﬁ’ *5‘};(-77 ar.
1t follows that (4.9
010 = 7Kgy = 1+ fot TFORrokd
2
=1+ ] ( ox(r 8Y 7 2+ a—z_‘é% aﬂ(r)()dT)
4,6

and similarly for the other a, (¢). The time-depen-
dence of a,,(¢) is given by

d L) 32y
a—z“ 3.11(3) = m an(t) +W 2,21(l) (4. 7)

and similarly for the other a;;(¢). These computations
can be summarized in the form

£ 50 = AW (4.8)
with A(f) given by
220 a2H
=03y (D) ey
A = 2y(n2 (4.9)
a2H 82
T ax(f)2 ay(Hiox(1)

Note that (4.9) reduces to (4. 4) when H reduces to H,.

Combining {4. 4) and (4. 9), we find that the time de-

pendence of J(¢, 0) = Jo(—EM () is given by
(3o

= Jo(—1)(—4, + A))I(¢)

= B(8)J(¢, 0)

J(t 0) =

(4.10)

with B(#) = Jo(—t)(A(t) A1), Accordingly, we can
write J(¢, 0) as the unique solution of the matrix differ-
ential equation (4, 10}, subject to the initial condition
J(0,0) = I:

3t,0) =1+ f; B(r)J(r, 0)dr. (4.11)

Now if K is any compact subset of S_, we denote by
IB(#)]l ; the norm
IB(A) . = sup{ IB(t)]I: (x(0), y(0)) € K}, (4.12)

where B({) is the matrix introduced in (4, 10), regard-
ed as a function of the initial point (x(0), y(O)) of the
motion w(#), and (B(#)ll is its matrix norm,

Theovem 4.1: 1 the matrix B(f) of (4,9) satisfies
J° IB®lgdt <, (4.13)

then lim J(¢, 0} = J(-, 0} as { = — © converges uni~
formly on every compact subset K of S_.

Proof: For t < 0,we rewrite (4,11} as
,t,0) =1— [° B()(r,0)dr. (4.14)
i
An n-fold iteration of (4, 14) gives
0
ft B(r)dr,
0 0
+ fz J. Blry)B(r,)dr,dr, +
0 .0 0
(=00 [0 fr e [ BEB(Ty)
n
«os B(7,)d7, -+ dTydry
0 40 0
A AR

v B(1,)d(1,,q,0)d7,

H1,0)=1—

B(7)B(7,)
i 0 dTedTy. (4.15)
Introducing the time-ordering operator P by

(4.16)

P(B(1q) - -+ B(1,)) = Blryy,)- - « Blrygy),

where 7;(» 18 any permutation of 7; for which ¢ <
Ty = *** = Tiey = 0, we may express (4, 15) as

3¢, 0) = I-—ft B(r,)dr,
,O f,O P((B(7,)B(ry))dTyd7; + +++
Ll L0 ftOP(B(Tl)B(Tz)
++ Bl1, )71, «
AR 0
:vzl+) 1)t ﬂ-‘ f* f‘ P(B(Tl)
LR B(Tn)J(Tn+1s O))dTn“" 1

- dr 2d71

«dredTy (4.17)

It is clear that for fixed ¢ the matrix norm of the re~

mainder term R, (f) of this expansion is bounded uni-
formly on compact subsets of S_ by

IR, () = m( S50 IB(7) ) , sup_ 137, 0,
{(4.18)
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from which it follows that IR, ()l , — 0 as n - ©, so
that the associated series expansion converges in
matrix norm uniformly on K to X¢, 0).

Now for any ¢, the matrix norm of the integfand of the
nth term in the resulting series is bounded by
I P(B(r,) +++ Blr, M, = IBr ) +-- IB(r ). (4.19)

In view of (4, 13) it follows that the nth term is abso-
lutely integrable for all {, and is bounded by

13,0, = - (f_‘; nB(T)anT)n,

which is independent of {. Hence we may compute the
lim J(¢,0) as { > — @ term by term in the expansion
(4.17), knowing that the resulting series will converge
to J(—w, 0) uniformly on K:

(4.20)

J(—0,0) =1~ ff; B(r)dr +- + (—nl!)" f_(;
X[ P@B(r) -+ BlrMr, --- d7,
+...
(4.21)

In particular, it follows that

0
[J(—2, 0)ll , = exp f_w IB(7) |l dr. (4.22)
A similar argument will establish the limit as
I—+ ©,

Theovem 4.2: SupposeH =H,+V,whereH, satis-
fies (3.2) and V satisfies (3, 3) and (4.1) with m = 1,
n > 0, Then lim J(¢,0) = J(—o, 0) as ¢ —» — © conver-
ges uniformly on every compact subset K of S_.

Pyoof: Under these assumptions, we have

22H,
3y(t)2
a (4.23)
0 0
and
azv 82H0 + an\
ax(Py()  ay(p)2  ay(t)2
Al ) (4, 24)
92V _ 32V
—_——ax(t)z ay(t)ox(t

where (x(2), y(£)) = w(t)(x,y). Hence
B() = Jo(—1)(A(1) — Ay I(t)

_ 3H ) 92V 02V
ay(®) XUy ay()2
= o — 32V — 22V

1

oH
O

0 1
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a2V " 02V
<3X(t)3y(f§ ax(1)2

) (sscom ™ i )

92V _< 92V 32V t)
ox(1)2 ay(t)ex(t) ~ ax(p)2 )/
(4. 25)

Now if (x,y) € K n S, then by (3. 29) we have
lw(H)(x,y) — wo(t)(x0y0)| < const(|¢/1-1/2) where
7> 0,(xy¥,) = w(—o, 0)(x, y), and the constant depends
only on K. Since wqy(1)(x,,¥,) = (X, + ugyt,y,), it fol-
lows that |x(#) — (x4 + uot)r)< const(| ¢ 1‘fl?2), so that
l2(&)| > lug| | ¢l-const(]¢/1-7/2) > const | ¢], for all
sufficiently large |¢|.

Now if V satisfies (4. 1), then clearly the entries
b,.jl t! of the matrix B(t) of (4. 25) all satisty
lb, ()] = const(]¢]-1-n) (4.26)

from which we derive the hypothesis, and hence the
conclusion of Theorem 4,1,

A variation of the preceding argument will show that,
under the assumption (4, 1) forall 2= + 1, the map-
ping w(—<0, 0) is in fact m times differentiable, For
this it suffices to show that all the partial derivatives
up to order m converge uniformly on all compact sub-
sets of S_. We shall content ourselves here with a
proof for the casen = 2;the general result follows by
induction on m,

We begin with the expansion (4. 21) for J(¢, 0), and com~
pute grad, J(t, 0), the vector matrix whose entries are
the gradients of the entries of J(¢,0) with respect to
the initial point of the motion w(¢). For any fixed ¢,
w(t, 0) is twice differentiable and

Q0
_ (_.1)n
grad, J(¢,0) _221 =

0 0
Xﬁ e ftl grado P(B(Tl) cee B(Tn)) dTn ...dTl’
(4.27)

the sum being uniformly convergent as before, But
lgrad, P(B(r,) -+ +
= 2%1 | P(B(,)
-+ gradyB(7,) - - - B(7,))l ¢
= ;‘__,1 IB(r )¢

o« lgradB(r )y =+ IB(7,)l .

B(7, g

(4.28)

Hence the nth term in the expansion (4. 27) is bounded
by

0 n-1
lgrad, J,¢ 0)lx = r% <ft ||B(T)“Kd‘r>
0
X ft lgradg B()llcdr. (4.29)
0
We know that [, IB(7)lcdr is bounded for all ¢, and

we assert that the same holds for [,° llgrad, B(7), dr.
In fact, we have

grado B(t) = grado(bij (t))

= ((grad b, X))

= ((grad b, X))o (2)3(¢, 0), (4. 30)
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where the entries b, (t) are given in (4. 25). It follows
thatgradb, (t) con31sts of linear combinations of third
partial derivatives of V, allof which, accordingto(4.1)
are bounded by const [¢|-4-1. The entries of J (#) are
bounded by const lt\ while the entries of J(¢,0) are
bounded by const. Hence

(4.31)

ligrad, B(r)lig = const [¢|-1-n

and our assertion follows,

Thus we see that the expansion for grad, (¢, 0) con-
verges term by term uniformly on K as ¢ - -, and
that the resulting series converges uniformly on K to
grad, J(—, 0), as required. We summarize these re-
sults as follows.

Covollary 4.3: If V satisfies (4.1) for 0 < k =
m + 1, thenw(—, 0)is m timescontinuously differen-
tiable,

Using Theorem 4, 2, we can now strengthen the con-
clusion of Theorem 3. 3, as follows. We denote by
Cy(E,, — Z,) the space of all m-fold continuously
differentiable functions with compact support in E, —
Z,,and introduce the norm ||

£l = sup{ D211,

where D#f denotes any k-fold partial derivative of f,
We put C2(E,, — Z,) for the completion of Gy (E,, —
Z,) under the norm (4, 32),

wo,m Y

10 = k= m}, (4. 32)

Covollary 4.4: 1f V satisfies (4d.1) for all k <
m + 1,then lim W(O 1) = W(0,— ) as {~» — © conver-~
ges strongly in Cy(E,, — Z,).

Proof: We presentthe proof for »: =1;thegeneral
case follows by induction on m, Consider
grad W(0, ¢) f(x,y) = grad f(w(t, 0)(x,y))
= (grad f)(w(t, 0)x,y)J(¢, 0)

= J(t, 0)W(0, t)(grad f). (4.33)

It follows that if f € CZ(E,, — Z,),

I w(0, —w) f —W(0, £) fll  , = ID(W(0, —0) f—W(0, ) )i,
< lligrad (w(0,—©) f — w(0, H )l
x [I{J(—o0, 0)W(0, —) — J(t, 0)W(0, t))grad |,
const [{W(0, —*)— W(0, {))grad £l
const |7,

IA

(4.34)

IA

Here we have used the fact that J(¢, 0) is bounded as
t = —; the rest follows as in Sec, 3,

In particular, if f is m times differentiable, so is
W(0,—®)f, The results of this section are equally
valid, of course, for { = + ©,

5. BOUND STATES

It is useful to provide an independent characterization
of the set S_ u S, of unbound states. In this section,
we shall show that under suitable additional hypothe-
ses, the complementary set B=E,, — S_U S, of
bound states has a compact intersection with each
level surface of the total energy function H.
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For this purpose, we shall assume again that H =

H, + V,where H, and V satisfy (3.1) and (3.2), In
addltmn we shall assume that H(y) = 0, and that tze
level szwfaces of Hy(y) are compacl in E — Z,. For
this it suffices to assume, for instance, that the Hes~
sian matrix a2HO/8y,8y] 1s everywhere a positive de-
finite quadratic form bounded away from zero, as it is
in the classical case H, = 3 y2.

Throughout this section, we shall write (x(¢), y(#)) for
w(t)(x, y), (u(t), W(t)) for (d/dt)(x(t), y(¢)) and E for
H(x(t),y{f)). We recall that E is the total energy asso-
ciated with the trajectory (x(#), y(£)) and is a constant
of the motion,

We shall say that the point (x,y) € E,, is an incoming
loutgoing) point if the inner product x-(aH/ay) <0

(> 0). Evidently if (x{2}, y(8)) 1s an incoming (outgoing)
po(mt ghen we have (d/d¢t)1x(1)| 2 = 2(x(¢)- (3H/2y)(1)) <
60>0

Lemma 5.1: For each E > 0 there exists a con-
stant R > 1 such that if (x(¢), y(#)) is any trajectory
with £ = H(x(#), y(1)) = 2F and (x(0),y(0)) is an
incoming point with |x(0)] > 2R, then for all ¢t < 0 we
have

lx()] = R + const |¢]. (5.1)
Proof: Given E > 0, we define
oH
m = min l_é?q :%E<H0(y)<%Eg, (5.2)
_ 0CH | 1 s
M = max }ayayl.aE<Ho(y)<zE€. (5.3)

Our assumptions on H, ensure that m > 0 and M < <o,
1t follows directly from (3, 3) that

[vix, )| = const x|-1-2, n>o0, (5. 4)
Hence we may choose R = 1 so that, if |x| > R,
(@) [vx)| < 3E,
lan< Lm, (5. 5)
v -
(©) |Z| < ot ™ xl-2,

Then for all points (x(¢), y(#)) with E < B{x(1),y(1) <
2E and |x{(f}|> R, we know that
[Ho(y() — E| = |Hyy(t)) — Hx(1), y(1)]

= |[Vlx(t),y(#)| <3E (5.6)
and hence that

oHy |

5 (.17
82H,

fa—ym—am? =u -9

Now we introduce the rectilinear trajectory (x,(?),
¥o(2)) by
x5 () = x(0) + tu(0), (5.9)
Yo(t) = y(0) '
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and define the set

I={t=0: [x(t) — % (1) | < 3m ] ¢]

and  |y(t) —yo()| <im/M}. (5.10)

Evidently { = 0 € I, and 7 is open in the left half line.
We shall show that I is also closed,

It suffices to assume that 7 € I for all 7 such that
t <71 = 0,and prove that then { € I, In this case we
know that for all such 7,

Ix(T)] > %5 (7)
= |%(0) + u(0)r| —
>(1x(0)]2 + [u(0)|272)1/2 — Zm ||
>3(1x(0)]2 + |u(0)]272)1/2 > 3|x(0

— tml7]
7
) >R, (5.11)

where we have used the hypothesis that x(0)«u(0) < 0
and ¢ < 0. It follows that for all such 7 conditions

(5.5), (5.7),and (5. 8) hold at (x(7),y(7)). Hence
Ix(t) —x, ()] = [ l 311(’) |ar
BHO aHO
SJ; ¥ ay oyl 47
0{ v ’d
ay(7) ayZo‘S T
< f,o Mly(r) —y(0)|dr + jtogde
<amltl. (5.12)
Similarly,
IY(t)—yo(t)lsjt'oi%wT
_lﬁ 0 dr
8m M "t Ix(m)l?
_1_"23 0 4dr
8m Mt 1x(0)|2 + |u(0)]272
_Lﬂz_<___271__> < 1m
~ 8t M\x(0) @)/ "4 M (5. 13)

Thus we see that if r ¢ T for all 7, t< 7 =< 0, then
t € I,and hence ¢ € I for all { < 0. In particular, (5. 11)
holds for all ¢, so that

(1= 3(1x(0)]2 + [u(0)]22)1/2

>R+ 5W/2]a(0)] [¢t])= R + im|t], (5.14)

as required.

We can now give a sufficient condition that a point
x,y) €E,, —Zyliein §_,

Thevrem 5.2: Every incoming point (x4,¥y) € E,,
of energy H(x,,¥y) > 0 lies in S_ if [x5| > 2R, where
R depends only on E.

Proof: Given (x4,¥,) € E,, with energy H(x,y,) >
0, choose E = 2H(x,,y,) and R by Lemma 5.1, Now
we can find a nelghborhood U of (%,,¥,) such that
every point in U is an incoming point of energy lying
between E and 2E, for which Lemma 5. 1 holds. In
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particular, if (x,y) € U then |x(f)| >R + im|¢| for
all £ < 0, where m depends only on E.

Now choose ¢ € C§(E,,), any function positive at
(¥o, ¥o) and vanishing off U, and consider W(¢, 0)¢. As
in Sec. 3, we have
d d
71 V(5,000 = 7 Wo (= HW (e
= iM(W(L, 0)p. (5.15)

Hence

W(,0) =i [ ® MW (r, 0)pdr (5.16)

and

1w, 000 — W(t",0)¢l, < [ M@W(r,00l,dr

= f IMw(r)oll ,dr. (5.17)
Now
MW(r)e = i{V, W(r)}e
_ Z)aVBW Jo %X;awa(yw_ (5.18)
So
IMw(r)oll, < |l lgradv| |gradw (re| |,

= lgradv)w(n)x |l lgradw(nel ,, (5.19)

where x is the characteristic function of the (com-
pact) support K of ¢. Now (cf 3. 21)

gradW(r)g = J(T)W(7) grade, (5. 20)
so that
Bt lgradw(r)ell, < [ J(r)x Il , 1w (r) gradell,. (5.21)
u
lw(r) gradoll, = lgradell,, (5. 22)
and
l7(T)x I, = 1 o), 0)x
= oMW (r, 00x [l (T, 0)xll
=< const(l + |7]), (5. 23)

where we have used the fact that J(7, 0) is uniformly
bounded on compact sets for all 7,and J, (1) is uni-
formly bounded on compact sets by const(l + |7]).

On the other hand, we have
lgradv)(W(n)x | = W 7)(gradv)xll
sup{|(gradv)x(r),y(r)): (x,y) € K}

= sup{const |x(7)|-2"": (x,y) € K}
< const(R + tm|7T])~27, (5. 24)
where we have used (3. 2) and (5. 14). Combining

(5. 21), (5. 23), and (5. 24), we find

lsw(T)ll, = const(l + |7|)R + 3m|7|)~2 "[gradel,
(5. 25)

from which it follows that W(¢,0)¢ converges to
W(— «,0)¢ as t > — ©,in such a way that
[W( ,0)¢ — W(¢,0)¢l < const|t|—". (5. 26)

Since W(¢,0) is the inverse of W(0, t) for all {, evident-
ly W(— o, 0) is the inverse of W(0,—) wherever it
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exists. Thus if we put ¢ = W{— ®,0)¢, then ¢ =
W(0,— ©)¢, so that ¢ € range W(0,— ®), and since ¢
is positive at (x,,y,), it follows that (x,,y,) € S_.

A similar result holds for the limit ¢ = + o, In this
case we find that every outgoing state (x;,y¥;) € E,,
of energy H(x,,¥,) lying between E and 2E lies in S
if |xy| > 2R, where R depends only on E.

If we define the set B of bound states as the comple-
ment E,, — (S, US_),then we can prove

Theorem 5.3: Every bound state (%;,y,) of energy
H(x,,¥q) lying between E > 0 and 2E must satisfy
|x| = R, |yl= R for some R depending only on E.

Proof: Choose R = max{2R_, 2R+}, where R_ is
given by Theorem 5.2 and R, is given by the com-
panion result for the limit ¢ = + o, Then if |x,| > R
and (x,,¥,) is an incoming or outgoing state, then
(X5, ¥o) lies in S_ or S, by Theorem 5.2, If (x,,y,)
is neither, then (x4, u,) = 0, and we can write (x,,y,)
as the limit of a sequence of incoming states (x,,y,)
for which (x,,u,) < 0. Now from Lemma 5.1 we
know that |x,(#)|> R + im|t| for all ¢ < 0, where m
is independent of # for » sufficiently large. It follows
that |X,(t) >R + tmlt| >|x,if |t|is sufficientlylarge.
Hence we know that for some 7, ¢t < 7<0, |x(r)|> R
and (d/d7|x(1)| < 0. Hence (x(7),y(7)) is an incoming
state of the same energy as (X;,¥,), and so lies in S_,
Since S_ is invariant under the motion, (xo, ¥,) also
liesin S_,

Corollary: The set of all bound states of given
total energy is compact.

6. SCATTERED STATES

We have defined in Sec. 3 the set S = S_ so that S_ is
the complete inverse image of E,, — Z; under the
mapping w(— «, 0). We have shown in Sec, 4 that
w(— ©, 0) is nonsingular and hence invertible, It is
clear that the inverse w(0,— ©) can also be realized
as the limit as ¢ - — o« of the inverses w(0, t) of
w(t, 0), '

We have also defined the set S, as the complete in-
verse image of E,, — Z, under the mapping w(+ ©, 0),
which is also invertible, and can be realized as the
limit as { = + o of the inverses w(0, ) of w(¢, 0).

Now on the set S = S, nS_ we can form the mapping

w(w,— ) = lim lim w(s, t): Ey, — Zy = Ey, — Z,
t+o0 -0

and interpret w(+ 0, — ) as a scatleving mapping

which compares the asymptotic behavior as / = + @

of the incoming and outgoing trajectories (x(/),y(?)) of

the scalleved states (x(0), y(0)) € S.

It need not be true, in general, that S =S, =S_. We
shall show in this section, however, that under the
assumptions of the last section the symmetric dif-
ference (S, US_})—S = E,, — (B U S) has measure
zero. It follows that S is not empty. It also follows
that if 1 = p < o then £2(S,) = £2(S_) = £XS). Since
L£2(S1) = W(0, = ©)L2(E,,), we have W(0, + 0)L2(E,,)
= £2(S). This means that in £2(E,,), 1= p < o, we
may define the scatieving opevator

W(+ o, —0) = lim lim W(s, )

S—r+on t—-00

and prove that this operator maps £?(E,,) isometri-
cally onto itself,

Now if S_ — S has positive measure, then it contains a
compact subset K of positive measure together with
all of the translates w(f)K of K under the motion w(¢).
Hence to show S_ — S has measure zero, it will suf-
fice to show that if K is any compact subset of S_ of
positive measure, then for some ¢, w(f)K N S, also has
positive measure.

Lemma 6.1:; If K is any compact subset of S_ of
positive measure, then (under the assumptions of Sec-
tion 5) w(t)K n S, has positive measure for some > 0.

Proof: Let Ky and K, be any two compact subsets
of E,,,and x; and x, their characteristic functions.
If K, C S_,then x5 = W(0, — ©)x5, where x; is the
characteristic function of K5 = u'(— ®, 0)K,. Hence

Ix1WE xally = W WO, — )5l
= llx, W(0, — W (— Hx3lly
= (Xl’ W(O, ol w)WO(— t)X3)2

= (W(0, — 0)*x 1, Wo(— t)x3)p. (6.1)
Now this last term is of the form (f, W, (— f)g), for
7,8 € £2(E,,). Since the group of isometries Wy (— )
is generated by an operator L, of absolutely continu-
ous spectrum (see Sec. 2), we know from the Lemma
of Riemann~Lebesgue that (f,W,(— t)g)y = 0 as

t > —wforall f,g € £2(E,,). Hence for all suffi-
ciently large ¢ > 0,

”X]_u,(— t))(g”ls %”)(1)(2”1 (6- 2)
or equivalently
Ky n w(Ky) = zu(Ky o Kp). (6.3)

Now given E > 0, choose R by Lemma 5.1 and T so
that if |x] < 2R and H(x,y) < 2E, then |y| < 2T.

Put K; ={(x,y): x| < 2R, |y| < 2T} and K, = K. Then
for all sufficiently large ¢> 0 the measure pu(K§ n
w(t)K,) of the set of states (x(t), y(t)) which lie in
w(t)K, but not in K is at least 3u(K; nK,). But every
such point is outgoing as it crosses ]]xl = 2R, and :
hence must belong to S, by Theorem 5. 2, For such f/,
then, (w (1)K NS;) > 3p(E N Ky). If p(K nKy) = 0 for
all choices of E, R and T defining K, then p(K) = 0;
hence if p(K) > 0,then p@w(H)K 1 S;) > 0,as required.

The same argument applies to S, — S. Hence,

Covollary 6.2: Under the same assumptions, the
difference E,, — (S U B) has measure zero,

Covollary 6. 3: Under the same assumptions, we
have forall p, 1< p< o
W(0, + ©)LP(E,,) = £L2(S,) = £L2(S). (6. 4)

Finally, we know that on £#(S.) the limit l_i)m Wi(s, 0)
§—+o0

converges strongly to an isometry inverse to
W(0, + o), In fact,if W(0, 4+ ©)f = g, then

If —Wi(s,0gll, = I f — W(s,0)W(0, + ©)fll,
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= ”W(O, S)f - W(O, + oo)f”p:

- 0ass - + o {6.5)

and similarly for s - — o,

Hence in view of Corollary 6.3 we have

Covollary 6.4: Under the same assumptions the

lim lim W(s, ()

s—+00 t—-o0
converges strongly to an isometry W(+ ©, — ©) =
W(+ ©,0)W(0, — ») of £#(E,,) onto itself for 1 =< p <
@,

7. DISCUSSION
A few comments are now in order,

(7.1.) The results of Sec. 3 may be regarded as a
contribution to the study of the stability of differential
systems under perturbations, We are dealing here
with “incompressible” autonomous systems, for which
the standard methods of stability theory do not apply.
The method developed here provides another
approach to the study of such systems, but depends
essentially on the incompressible character of both
the perturbed and unperturbed motions. It may be
possible, however, to extend this method to suitably
defined “almost incompressible” or “asymptotically
incompressible” motions.

(7. 2,) Condition (3. 3) on the perturbation V(x) is
essential, in view of the fact that the results of Sec. 3
are known to fail for Coulomb forces, for which

V() = const|x|~1.

(7.3.) It is tempting to conjecture that the results of
Sec. 6 can be improved in various ways. For instance,

it seems plausible that S, = S_, But there are sys-~
tems with trajectories (x, (1), y(¢)) for which
lim|x(f)] =®was t = — o, but lim|x(f)] =0ast > +
©, Such a trajectory describes the motion of an in~
coming particle which spends its whole lifetime
climbing a potential hill, ultimately coming to rest at
the top. All the points on this trajectory then lie in
S_,but not in S,. We have shown that the set of all
such points must have measure zero under the
hypotheses of Sec. 5.

1t is also plausible that |x(#)| = const(l + |¢|) as

{ = + © uniformly on compact subsets of S_. But
there are systems in which an incoming particle
may enter a potential cavity with a very narrow en-
trance, and then spend an arbitrary long time finding
its way out again; for such a particle |x(¢)] = const
for arbitrarily large {. It may be possible to estab-
lish a uniform asymptotic behavior for / — + ® on
compact subsets of S_ in the absence of potential
cavities, a possibility suggested by analogous results
recently obtained for acoustical scattering from con-
vex boundaries.

Note added in manuscvipt: After completing this
manuscript, the author learned of a paper by W.
Hunzikers dealing with the same subject. Hunziker
considers the much more difficult many~body pro-
blem, but restricts his attention, as does Cook,2 to
finite-range forces. He indicates in Sec. 5, however,
how to extend his proof of the existence of the wave
operators to include infinite-range forces; our proof
of Theorem 3.3 is then a special case of his. He does
not indicate how to prove the existence, differentiabi-
lity, or asymptotic completeness of the wave map-
pings for such forces; perhaps our methods will pro-
vide a starting point for an attack on these questions.

1 J.M.Cook,J.Math, Phys. 36, 82 (1957).

2 E,T.Whittaker, A Trealise on the Analytical Dynamics of Pay-
licles and Rigid Bodies (Cambridge U.P., Cambridge, 1937);
H. Goldstein, Classical Mechanics (Addison-Wesley, Reading,
Mass., 1950).

3 J.M. Cook, “Banach Algebras and Asymptotic Mechanics,” Insti-
tute D'Etudes Scientifiques de Cargese, 1965.

4 C.E.Rickart, General Theory of Banach Algebras (Nostrand, New
York, 1960).

5 W.Hunziker, Commun. Math. Phys. 8, 282 (1968).
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algebras—a phenomenon previously claimed impossible.

INTRODUCTION

The purpose of this paper is to present a complete
and detailed classification and analysis of all the
Inonu-Wigner contractions (IWC's) of all the real
Lie algebras of dimension 1,2, and 3.

Despite the growing interest in contractions in both
mathematics and physics, the only analysis of this
type is in a somewhat obscure report by Sharp.! Un-
fortunately Sharp's analysis contains a number of
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errors in and omissions of some of the most interest-
ing cases. Surprisingly, Sharp's work has been
referenced throughout the literature with no recogni-
tion of its errors and has thus led to numerous in-
complete and, in certain instances even inaccurate
results. The author will be dealing with some of
these in another paper.

A repertoire of accurate and detailed (e.g.,the dimen-
sionality of the various subalgebras involved, which
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errors in and omissions of some of the most interest-
ing cases. Surprisingly, Sharp's work has been
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tion of its errors and has thus led to numerous in-
complete and, in certain instances even inaccurate
results. The author will be dealing with some of
these in another paper.

A repertoire of accurate and detailed (e.g.,the dimen-
sionality of the various subalgebras involved, which
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subalgebras lead to which IWC's, and which algebras
can be obtained as IWC's) examples is essential in
“guessing ” general theorems and checking counter-
examples. In order to provide such a repertoire and
to stop the perpetuation of the errors mentioned
above, the author has carried out the analysis pre-
sented in the following sections.

1. TERMINOLOGY

Let G = (V,[, ]) denote a Lie algebra with underlying
vector space V and Lie bracket [ , |. We then, except
where specified otherwise,let G’ and Z (or Z; if G
needs emphasis) denote the derived algebra of G and
the center of G, respectively. If W C G is a Lie sub-
algebra of G then let n = dim(G), n’ = dim(G’),

n, = dim(Z), and n ,, = dim(W).

For ¢ € [0,1],1et A, be a linear operator on V, with
A, nonsingular for ¢ € (0,1]. Define,for each t €
(0,1], a new Lie bracket on V by

(X, 7], = A7 [A X, A, Y]

for each X, Y €V and let G, =(V,[,];). Suppose
there are complementary subspaces W and Uof V
such that the A, “block decompose”, re (i.e., with
respect to) the decomposition V = W + U, into the
form

1, 0 D 0
A= +t
0 0 0o I,

for all ¢ € [0,1], where I, and I, are identity opera-
tors on W and U,and D is an operator on W.

The limit
tim [, ¥], = [, Y],

exists for all X, Y € V iff [,]_ is a Lie bracket on
V. Whenever this occurs, the resulting Lie algebra
G,=(V,[,],) is called an Inonu-Wigner contraction
(IWC) of the original Lie algebra G = (V,[,]). Inonu
and Wigner2,3 discovered that this happens iff W is a
subalgebra of G. Moreover the outcome of an IWC is
not affected by the operator D, so there is no loss in
generality by our considering only D = 0.

(1.1)

It can also be shown4 that, for a fixed subalgebra W,
any other complementary (to W in V) subspace U,
together with the new operators of the form (1) re the
decomposition V = W + U, yields the same (i.e.,iso-
morphic) Lie algebra. Hence we may unambiguously
write G¥ and call this the IWC of G ve the subalgebra
W. Furthermore, every IWC of a given Lie algebra G
is obtained if we (i) take each subalgebra W of G; (ii)
fix a basis {X,, ..., X, }for W; (iii) complete this to
a basis {Xl, e X, foxWV; (iv) define A, X, = X; for
l1=i=ny, AX =IX, for nw< { =n,and extend
by linearity; and (v) determine the resulting G ¥.

Following the usual convention, we define an algebra
by specifying the commutation relations on a fixed
basis with only the nonzero ones being actually
written down, except for special emphasis. Since any
proper (i.e.,G__ # G) IWC results in a semidirect
sum, the semidirect decompositions of the various
algebra are of special interest and are hence pointed
out in the classification. We omit repeating that the
k-dimensional Abelian Lie algebra A# is the direct

sum of 1-dimensional (Abelian) algebras. Some other
notation used is now listed.

sp{X 10X k} = the vector subspace with basis
X1, .., X, )
L{Xl, e, X k} = the Lie subalgebra with basis
Xy, ..,x, )
P ¢ K = Lie algebra direct sum of the Lie
algebras P and K.
P 9, K = Lie algebra semidirect sum of the

Lie algebras P and K, where 7 is
a representation of X in P by deri-
vations.

2. REAL LIE ALGEBRAS OF LOW DIMENSION

For purposes of uniformity and convenience, we now
classify and establish notation for the real Lie alge-
braswithn=1,2,and 3. Thebasesforthesealgebras
are chosen to best facilitate our later calculations of
all the IW contractions of these algebras and, at the
same time, to minimize the number of nonzero struc-
ture constants. For other discussions of low-dimen~
sional Lie algebras, the reader is referred to Jacob~
son® and Talman.6

A.n=1
The only one-dimensional Lie algebra we denote by
Ay(= Al). For any basis {X,}, 4, is defined by

[X;,%;] =0 (2.1)

and, of course,n, =n =1andn’ =0,

B.n=2

We classify these according to value of #n’. Since
n' = 2 is clearly impossible with » = 2 we have only
the following two cases.

1. ' =0: (n, = 2) Denote it B, (=™ A2, since
Abelian). For any basis {X,,X,}, B, is defined by
[X,,X,] = 0. (2.2)
2. n' =1: (ny; =0) Denote it B,. Let X; € B,
(X; = 0) so that B = L{X,} and choose X, so that
B, = I{X,,X,} and scaled so that B, is defined by
[X,, X,] = X,, 2.3)
sometimes called the “ax + b (or affine) algebra”,
since it is the Lie algebra of the “ax + b (or affine)
group” in one dimension, B, is noncompact (i.e.,it is
the Lie algebra of no compact Lie group) and can be
represented by 2 X 2 matrices by letting

_ {01 {10
X, = <0 1) and Xz—(o 0).
We also note that B, is complete,® is solvable but not
nilpotent, has L{Xl} as its only proper ideal, and is
the semidirect sum
B,=A,9 A, = L{x,} o LiX,},

where 7 is the scalar representation.
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C.n=3

Again analyzing re the value of »n’, we have the follow-
ing cases:

1. n' = 0 (n, = 3) Denote it Clﬁ2 A3, since
Abelian). For any basis 1X,, X,, X, |, C, is defined
by
(X, X]=0. (2.4)

2. n' =1:(m, = 1, by a simple dimension argu-
ment.) Choose X, so that G’ = L{X,}. Any choice of
X, and X, so that G = L{X,, X,, X,} gives the form
(X1, X,]=aXy,[X,X5) =bX,[X,,X;5] =cX, and
the following two cases arise.

Case (a). G’ = Z: (a =0 =>5) Denote it C, and
scale so that ¢ = — 1 so that C, is defined by
[X, X,] =0=[X,,X,], [X;3X,]=X,. (2.5)
Often called the Heisenberg algebra, C, is the only
non-Abelian nilpotent algebra with » = 3 and can be
represented by 3 X 3 matrices by letting

001 000 010
x, =l000], Xx,={001), Xx,=[000].
000 000 000

Notice that the only one-dimensional ideal is G',all
the two-dimensional ideals are Abelian (~ B;) and
are of the form L{Xl,azX2 +bX; = Yz}, with a # 0 or
b = 0,and C, is of the form C, = B, & , 4; = (L{X}}
® L{Y,}) ® , L{Y,}, where Y; = cX, + dX;, with ad —
bec = 0,and 7 is the representation defined by n(Y;):
X, 0; Y, (ad-be)X,.

Case (b) G’ = Z: Here choose X, and X, so that
Z = L{X,}, so that a = 0 = ¢, and scaled so that b =
— 1. Denoting this unique algebra by Cj, it is de-
fined by

[X1’Xz] =0= [Xz»Xs]r [Xsrxl] =X, (2.6)

and can be represented by 3 X 3 matrices by letting

001 000 100
x,=(000), X,={(001), X,=(000
000 000 000

or by 2 X 2 matrices by letting

01 10 10
X1 = <o o>’ Xy = (o 1>’ Xy = <o o>'

In contrast to C,, C, has two one-dimensional ideals
G' and Z. All the two-dimensional ideals of C; can
be written in exactly the same form as for C,, but,
unlike that case, L{X,, X,} alone is Abelian (= B,)
and all the others, of the form L{X,,aX, + X, = Y.},
are non-Abelian (=~ B,). Thus we have

Cy=B, &, A = (X }e x,he, Lix,}
= B,® A, = (L{x,} @ , L{¥,;)o L{X,},

where 7 was defined re B, and 7 is the representa-
tion defined by

T(Xg) i Xy 2 X1 X, 0.
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3. n'=2: (n, =0) Since G’ is an ideal in G, if
G’ = B, then its completeness> would lead to G =
B, ® A, and thus to G’ = B}, contrary to the dimen-
sionalities of G’ being 2 and of B}, being 1. Hence
G’ = B, and we see that every algebra in this class
is solvable, but not nilpotent. Moreover, it is now
clear that, for any choice of X,,X,,and X4 so that
G' = L{X,,X,} and G = L{X,X,,X ;}, the adjoint
action of X, is that of a nonsingular linear operator
on the two-dimensional space G’ = L{X 1,X,r. Letting
A, and A, be the roots of the characteristic equation
of this operator (note: x; # 0 and ), # 0 always), we
classify these algebras in the following way:

@) Ay and X, veal and theiy eigenspaces span G':
In this case choose X, and X, to be eigenvectors cor-
responding to A, and A,, respectively, scale X, so
that A, = 1, and denote the resulting A, by A and the
algebra by C,(1). Then C,(}) is defined by
[X1,Xp] =0,  [X3X] =X, [X3,X,]=2X,

(2.7
and can be represented by letting

001 000 100
X, =(000), X,=(001), X,=(02x o0}
000 000 000

It should be pointed out that C,(A) = C,(1/1) [let
X, =X,,X, = X;,and X3 = (1/0)X;].

Each of these algebras only has proper ideals of the
form:

Lx,} ~ A,
and L{Xl,Xz} = C4(A)’ = Bly

Lix,} ~ A,

except for C,(1) which, since here every element of
C,(1) is an eigenvector, also has all the subalgebras
of the form LaX; + bXZ} ~A,a#0o0rb #0,as
ideals. Thus we have C,(\) =B, & , A4, = (Lix,} o
Lix,}h) & , L{X,}, where each 7 = (%) is the direct
sum of two scalar representations.

(0) Ay = A, veal but not diagonalizable: In this
case choose X, and X, so that ad X; is triangular
with X, as eigenvector, scale X5 so that A; =2, =1,
and scale X, so that we finally have
[Xl’Xz] =0,

(X3, X,] =X, [X3,X,]=X,+X,.

(2.8)
Denoting this algebra by Cy,we see that it can be

represented by setting
110
X;=(010].
000

001 000
x, =000}, Xx,=[00 1),
000 000

Notice that the only proper ideals of C, are L{X,} =
Ay,and L{X |, X,} = C5 = B, and we have

C,=B,o A, =X o L{x,he Lix;},
where 7 is clear by now.
(¢) A; and r, complex: (A = Xz) In this case,
choose X; and X, as the “real” and “imaginary”

components of the eigenvector (in the complexifica-
tion of G’) corresponding to A; =a + b (b = 0) so
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that [X5,X; +iX,] = (a + ib)(X; +iX,). Taking real
and imaginary parts of this equation, we get

[X5,X,] =aX, — bX,, [X;X,]=0X, +aX,.
We then scale X so that b =— 1, denote the resulting
a by A,and denote the resulting algebra by C4(r),
which is thus defined by

[X;,X,] =0, [X3,X;] =X, +2X,,

[X5,X,] =— X, +2X,.  (2.9)

Moreover Cg4()) can be represented by letting

001 000
x,={000), X,=(00 1),
000 000

These Cg4(X) contain no one-dimensional ideals and
only one two-dimensional one, namely L{Xl,Xz} =
Cg(2)’ =~ B, ,and we have

Ce)) = Bi@ (A, = (I{X,} o LiX,}) &, LiX,}.

We should note that C,(0) is the Lie algebra of the
group of Euclidean motions in the plane.

4. n' = 3: (ny; = 0) In this caseX,, X,,X, can be
chosen so that [X,,X,] = X; and G = L{X,,X,, X,}.
Although the details are not interesting for our pur-
poses and are hence omitted, a straightforward calcu-
lation shows that there are exactly two distinct alge-
bras in this class. Both these algebras are simple
(i.e.,have no proper ideals) and, by additional judi-
ciousness in the choice of X, X,,X,,we are led to
the following two cases:

Case (a). Denoted by C, and defined by

[Xl’Xz] =X3, [Xz’Xs] =X,, [XS’Xl] =X,.

(2.10)
This is the Lie algebra of the three-dimensional ro-
tation group SO (3) and the special two-dimensional
unitary group SU (2) and is hence also denoted so (3)
and su (2) and can be represented by letting

0o O 00 1 0-10
X,={00—-1) x,=( 000}, x;={1 00}
01 0 ~100 0 00

1t should be noted that C, is the compact real form of
the Lie algebra sl (2, C).

Case (b): Denoted by Cg and defined by

[Xl’XZ] = X3, [Xz’Xsl =— X, [X3’X1] =—X,.

(2.11)

This is the Lie algebra of the two-dimensional
Lorentz group SO (2, 1) and is hence also denoted

so (2, 1) and can be represented by
000 001 0-10
X, =|001), X,=(000]), X;=(1 00|
010 100 0O 00

It should be pointed out that Cgis also the Lie algebra
sl (2, R) of the two-dimensional special linear group
SL (2, R) and is the noncompact (contains the noncom-

A—-10
X,={1 x0).
0 00

pact B, as a subalgebra) real form of s/ (2, C). When
viewed as sl (2, R),the “standard” basis and repre-
sentation chosen are

h=2X,, e=X;+X; [f=X,—X;
so that
le,f1=h, [he]=2e, [hf]=—2f

d
(o9 =60 =Y.

3. INONU~-WIGNER CONTRACTIONS

We now determine all of the Inonu-Wigner contrac-
tions (IWC's) of the real Lie algebras withn =< 3,
using the notation established in Sec.2. In defining
the maps A, by telling what they do to a specified
basis, we are repeatedly using the fact that an IWC is
completely determined by the subalgebra W, which
the contraction is with respect to,in the sense that
Goc';" is independent of the complementary subspace
(of W in G) chosen. We now list (without proof here)
a few other basic theorems about IWC's which are
used repeatedly and without comment throughout this
section:

(i) GE = G for any Lie algebra G.
(i) G0} = A*(n = dim G) for any Lie algebra G.

-]

(iii) If Wis a central subalgebra of G(i.e., WCZ C G),
then G¥ = A*(n = dim G).

(iv) n,, < n’ for any IWC.4

(v) (A*)¥ = A* for any subalgebra W C A",

Without further refreshers we proceed directly to the
calculations at hand.

A, Since A, = A1, A, = A, always.
B,: Since B, = A2, B, = B, always.
B,: Two cases occur here:
w = I{X,} = By:
A X XX, > X,
(X5, X5, = tA7HX,) = X, 2 0:(By) ¥ = B;.
W = W(a) = L{aX, + X, = Y,} # B}:
ApX, 2 XY, 1,
[Y,, X,], = tA71 (X)) = X, 2 X, :Bzwcc(,a) = B,.
C,: Since C, = A3, C,_, = C, always.
C,: We consider first ny, = 1 and then ny, = 2:

W = L{X,} = C} = Z yields C, = C;.
W = W(a,b,c) = L{aX; +bX, + cX; = Y,} with
d=>b2+c2 =0,
Let Y, = (— ¢/d)X, + (b/d)X,:
ApX = X3V, Y, Y, o Y
XY, =[X,Y3], =00 }'C —c
[Y3,Y,), =tA7IX ) =X, » X, | 2= 7%
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W =W(a,b) = L{X,,aX, + bX; = Y,}

withd = a2 + b2 = 0.

et Y= (-b/d)X, + (a/d)X ;:
AprX 2 X3Y,7 Yo Y 1Y 55
(X1, Y] =[X,Y3], =0~ 0
[YB’Yz]t = tA;’l(Xl) = tXl_) 0.

Vo -
Hence CJ_ =C; whenever n,, = 2.

- Remark: Since IWC with respect to W leaves W
anchanged and makes its complementary subspace
Abelian, one might make the following:

Conjectmfe If Wy C W, C G are subalgebras and
Gml = G, then C-‘m,2 =

Counterexample: Let G = C,, W, = W(a,b, ),
and W, = W(b, c), as above. Then W, CW,CG=¢C,
and C¥i1 = Cybut CJ2 = C,.

C5: Congider firstng = 1 and thenny, = 2:

W= L{X,} = Z yieldsC5, = C,.
W=Wa) =L{Xx, +aX,=Y,},
ApY 2 Y X, XX Xy
(X2, Y1), =[X5,X5], =0 0
[Xs. ], = t4710¢,)
=X, + a(t — 171X ,)
:t)(l +a(t— 1).X2_) —G‘XZ'
Hence, for eacha = 0, CW(”) C,, the Heisenberg
algebra and for a = 0, CW(O) = Cl[note W(0) = C4]:
W =W(a,b) = L{aX, + bX, + X5 = Y},
ApX = XX, XY 3~ Y
X2, X1l = [X5,Y3], =0 0;
[Y:th]z =At1(X1) =X,7 X,

Hence, for eache and §,C;3 = Cg.

W= L{x,X,} ~B,),
ApX = X3Xo= Xog3 X3 1X 5,
[Xz’Xﬂt = [X2’X3]t =0-0,
[X3,X,]; =tA"1X ) =X, 0.

Hence C;,, = C,.

W=W)=L{X,,aX, + X3 = Y3} (*By),
ApX 2 X5X,= X573 Yy,
[X2.X,]; = [X5, Y5}, =00,
[Y3,X,]; =47 X)) =X, > X,.

Hence, for each a, C5_ = Cj.

The remaining two-dimensional subspaces are of the
form splaX, + X,,bX | + X,}, which are subalgebras
iff @ = 0, so that the only remaining case is the
following:
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W=W0)=L{X,,bX, + X5 = ¥,} (~B,),
ApX, - XX, > Xo3Y3— Y,
(X2 X4] = [X5,¥5], =0~ 0,
[Y3,X,]; = tA71X,) =X, - X,.

Hence, for each b, C5 = Cs,.

C4(\): Again consider ny, = 1 and thenny, = 2:

W= L{x,},
ApX 2 XX, 2 XX, X4,
[X1,X,]; = tA71(0) =0 0,
X5 X,]; = tA71 () = X, = 0,
[X3,Xo], = 2A710X,) = X, > 0.

Hence C,(0) = C,.

W= W)= L{aXl + X, = Y2}7
ApX 2 XY, YV Xy- X,
[Xl’ Yz]t = tA;l(O) =0 0,
{Xssxl}t = t2A~£1{X1) = tXl_) 0;
[X3,Y5], = tA71 (X + AX,)
=aX; + iMa(t - DX, +X,)
=(a+ra(t— 1)X,; + XX, a(l—2)X,.

For X = 1 this gives C,()¥@ = C,.
For ) = 1 this gives C,(0 # )¥@ = C, for a = 0 and
C,0= HF@ ¢, fora = 0.

W =Wia,b) = L{aX| + bX, + X5 = Y,},
ApXy 2 X3 X2 1X Y32 Yy,
[X,,X,]; = 2471 (0) =0~ 0,

[Y3,X41], = 1A7 X)) =X, > X,
[Y3,X,], = 1A71 (X,) = XX, = AX,.

Hence C,(A) = C4(), same A.

W= L{X,,X,} = C,),
ApX, 2 XX, X3 Xa = 1X,,
[X1,X5]; =471(0) =0~ 0,
[X3,X,], = A7 (X{) = X, = 0,
[XB’Xz]t = tA71 ()\Xz) =X, 0.

Hence C,(\)¥ = C,.

W=Wa)=L{X,,aX, +X;=Y,},
ApX 2 X5Xo2 XY 3= Yy,
[X1,X,], =471 (0) =0~ 0,
[Y3,X,], =A7 X)) =X~ X,
(Y3, Xp) = A71 0X5) = X5 = AX,.

Hence, for each a,C,{}),, = C,(a), same x.

The remaining two-dimensional subspaces are of the
form splaX, + X, = Y,,bX, + X5 = Y4}, which are
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subalgebras iff a = 0 or A = 1. Thus the two remain-
ing cases are as follows:

Casea=0:

W=W0)=L{X,,bX, + X3 =Yg},
ApX, - X 3X, = X3 Y3 Y,
[Xl,Xz]t =tA71(0)=0— 0,
[Y3,X,]; =tA71 (X)) =X,> X,
[Y3,X,], = A7 (X )= 20X, AX,.

Hence, for each b, C,(A),, = C4(2), same A.
Caser = 1;

W=W,b)= L{aX, + X, =Y,,bX, + X5 =Y,},
ApX 2 XY, 2Y, Y Vg,
[X1,Y,], = tA71(0) = 00,
[Y3,X1] = A7 X)) =X, > X,
[Y3, V5], = A7t (aX ) + 1°X)
SA7I(Y) =Y, 17,

Hence, for each a and b, C,(1), = C,(1).
C5: Again consider ny, = 1 and thenny = 2

W =L},
ApX 2 XX, o (XX, Xy,
[X1)X2]t = t‘A?l(O) =0- Ov
[X3,X,], =tA71(X,) = X, ~ 0,
(X3, X5); = 12A71 (X + X))
= 12X, + X, 0.

Hence C5 = C;.

W=W)=LaX, + X, =Y,},
ApX 2 IX3Y,2 Yo, Xa (X,
[X4,Y,];, =tA71(0)=0—-0,
X3 X4l = 12471 (X)) =X, = 0,
(X3, Y,], =tA7l(aX, + X, + X,)
=tA71 (X, +Y,)
=X, +1Y, X,.
Hence, for each a, C5 = C,, the Heisenberg algebra.
W =W(,b)=L{aX, + bX, + X5 = Y3},
ApX 2 XX, 2 Xy Y Y,
[X1,X,]; = t2471(0) = 0— 0,
[Y3,X,], =tA7T X y)=X, > X,
(Y3,X5], = tA71 (X + X))
=X, + X, X, + X,

—_— e

Hence, for each ¢ and b, C5 = C;.
w=L{X,,X,} =Cs,
ApX 2 X X2 Xpi X2 X,

[X1,X5], =A71(0)=0- 0,
[X3,X1]t = tA;l(Xl)= tX,- 0,
(X3, X,], = tA7I(X) + X,) = 1X, + X, 0.

Hence (C;5)S5 = C;.

W=W@)=L{X,,aX, + X5 = Y},
ApX 2 XXy X373 Vg,
[X 1, X,], = tA71(0) = 0 0,
[Y3,X,], = A7 X)) =X > X,
[Y3,X,]; = tATY X + X))
=X, + X, X,

Hence, for each a, C¥©@ = C,(1).

Remark: The derived algebras of both C5 and
C,4(1) have dimension 2, so the contraction just ob-
tained is an example of a type contraction which is
claimed by Sharp! to be impossible.

All other two-dimensional subspaces are of the form
splaX | + X,,bX, + X 5}, none of which are subalge-
bras, so the analysis is complete for C

CS(A).- Again consider ny, = 1 and thenny = 2:

w=LiX,},
ApX, 2 XX, XXy (X4,
[X,,X,], =tA71(0) =0~ 0,
(X3, X,], = A7 &y + 2X,)
=X, + DX, > X,
[X3,Xp]; = 12A71(— X, + \X,)
=— 12X, + X, 0.

Hence C4(\),, = C,, the Heisenberg algebra.

W= W) = L{aX, + X, = Y,},
A X =X Y, 2 Yy X 421X,
[X1,Y,), =tA71(0)=0-0
[Xg,X,]; = 2471 (X5 + 2X )
=12A71(Y, + A~ a)X,)
=12Y, + th—a)X, > 0,
[X3,Yp)y = tA71(a(Xy + AX ) + (- X + XX,))
=1tA71((a + M) X, + (@ — 1)X,)
=tA71((@a+ MYy + (—a?2 - 1)X))
=ta+NY,— (a2 + 1)X,
—~— (a2 + 1)X,.
Hence, C4(r),, = C,,the Heisenberg algebra.
W=Wa,b)=I{ax, +bX, + X, =Y},
Ap X PIX X2 1X,,Y3> Y,
[X,,X,], = 12A71(0) = 0 0,
[Y3,X,], =tA71 (X, + XX,)
=X, +2AX; = X, + AX,,
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[Y3,X,], = tA71 (= X, + XX,)
=X, A, — X, X,

Hence, for each a and b,C4(\),, = C5(A), same A.

W= L{X,,X,} = Cg0),
ApX, 2 XX, X X3 X4,
[X,,X,], =A71(0)=0~0,
[X3,X4], =tA71 (X, + 2X )
=X, + DX, - 0,
[X3,X5]; = A7 (- Xy + MX)
=X, + DXy~ 0.

Hence Co\)Y = C,.

All the other two-dimensional subspaces can be put
in one of the following two forms:

() sp?{l,ax2 + X4},
(i) splaX, +X,,bX, + X,}.

It is easily checked that none of these is closed under
the Lie product and are hence not subalgebras. Thus
the derived algebra is the only two-dimensional sub-
algebra and the analysis of C4()) is complete.

C;: (=so0(3)) Besides the properties already
pointed out about C,, it has a very useful symmetry
about it which can be described by saying that given
any nonzero element of C7, by properly scaling this
element, two other elements can be chosen so that the
canonical commutation relations (2. 10) hold for these
three elements. Thus it suffices to consider any one
one-dimensional subalgebra.

W = L{X .},
ApX, 2 XX, XX X,

[X,X,], =12A71(X3) = 12X, 0,

[X3,X], =tA71(X,) =X, X,

[X5,X,5], = A7 (X)) =-X, » —X,.
Hence C, = Cg(0),the Lie algebra of the group of
Euclidean motions in the plane.
C, has the additional characterizing (among three-
dimensional algebras, at least) property that it has no
two-dimensional subalgebras whatsoever, due to the
fact that any two linearly independent elements gene-
rate (as a Lie algebra) all of C,;. Thus the analysis
of C; is complete.

Cg: Again consider ny = 1 and then ng = 2:
W=L{aX, + bX, =Y,} withd2=a2+b2=0,

LetY, = (—b/d3)X, + (a/d2)X,:

ApiYy 2 Y Y, 2 tY X, 21X,

[Yl’Yzlt = A7 (Xs) =Xz X,

[Yl’XS]t = tA;l(aXZ + b(_Xl))

= tA71(d2Y,) =d2Y,— d?Y,,
[Y3,X 3], = t2A71((— b/d?) X,
+ (a/d?)—X,))
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=12A71(—d2Y))
=—12d-2Y - 0.
Hence we can see (by setting X, =Y, + d"1X,, X} =
Y, —d 1X;,X5 =d 1Y) that, for all admissible a
and b, Cq =C,(—1).
W = W(a,b) = L{aX, + bX, + X, = Y,},
ApX, 2 XX, XY 52 Yy,
[X1,Xp]s = 12A71 X 5)
=12A71(Y3 —aX, — bX,)
=12Y,; — taX | — tbX, — 0,
[Y3,X,], = tA71 0 X5) + (- X))
=tA71(bY 5 + abX, + (b2 — 1)X,)
=—tbY5 + abX, + b2 - 1)X,
= abX; +(2-1)X,,
[Y3,X,]; =tA71(@X; + X))
=1A71(@Y; —abX, — (a2 — 1)X,)
=taY3—abX, + (1—a?)X,
- (1—a2)X, — abX,.
Hence it is clear that ad Y ; acts on LiX,,X,} asa
linear operator whose determinant is 1 — (@2 + b2)
and whose characteristic polynomial has roots + (a2 +
b2 — 1)V2, In case a2 + b2 = 1, the operator is
easily seen to have rank 1, so the derived algebra is
one-dimensional, and to have roots +0, so that ad Y 5

is nilpotent, and hence we have C,, the Heisenberg
algebra. Hence we have:

If a® + b2 = 1,thenCg = C,.

If a2 + b2 > 1, then the roots are real and of equal
magnitude so that Cg = C 1).

If a2 4+ b2 < 1, then the roots are pure imaginary so
that Cg_ = C4(0). This completes the analysis for
the one-dimensional subalgebras.

Of all the two-dimensional subspaces of the form
spix 2,0X, + bX 3} (i.e., those containing X ,), only

two are algebras, namely the following: Wy = L{X,,
X X3 = Yi_}. These can be treated simultaneously
by consistently taking the upper (for W.) or the lower
(for W_) sign in the following analysis:

W, =I{X,,X, +X,=7Y,},
ApiYy 2 Y5Xp 2 X3 X3 X5,
(X3, Y], = tA71(—X})
=—1tX,—0,
[X5,Y,]; =A71(— X5 £ (X))
=A71(FY,) =+ Y ~FY,,
[X3,X3]; = tA7L (- X )
=tA71@X, - Y,)
=X, 1Y, > X,
Hence we see (by setting X} = Y,, X5 = X4, and
5 =FX,) that (Cg)¥* = Cy(—1).

The remaining (i.e., those not containing X,) two-
dimensional subspaces are of the form sp{aX 2t X3=
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Yg3,X, + bX, = Y }. It is easily checked that such
subspaces are subalgebras iff a = £ (1 + ¥2)/2, Thus
we have, by letting ¢ = (1 + b2)1V/2, the following two
infinite classes of subalgebras:

W, =LIX +bX,=Y,,X;+cXy=Y4},
ApY > Y 3X,= XY= Vs,
[¥Y,X,5]s = tA71 (X)
= A7 (Y3~ cXy)
=Y, — X, — Xy,
[Y,Y3) = A72 (X + X3 — bX,)
= A71(cYy; —bY,)
Yy —bY = Y, —bY,,
[X5,Y3); = A7 (=X )
= tAT1 (X, — ¥,)
=bX, — 1Y, - bX,.
By letting X, = cX3+ X, —bX, =¢cY3-bY , X\, =

Xg,and X5 = ¢c"1X, + bc"1X, = ¢71Y,,we can see
that Cg = C, (- 1).

i

Wy =X, +bX, =¥, X3 —cX, = Y3},
ApY 2 VX, = XY ¥,
[Y1’X2]t = tA71 (X3)

= 1A71 (Y4 + cXy)
=t¥3+ Xy, X,

(Y1, ¥3]; = A71 X, — X3 —bXy)
= A71(=bY, —c¥,)
=—bY ~c¥y —b ¥, —c¥,,

(X2, Y3l = tA7 (~ X )
= tA71 (X, — Y )
=bX, — 1Y, bX,.

n's=0:

FIG.1. All Inonu-Wigner contractions of all the real Lie
algebras of dimension 3.

By letting X, = cX; —X, + bX, =cY3 + bY , X}, =
Xgand Xy = —¢"1X, —~bc"1X, = —c"1Y,,we can
see that Cg = C,(—1).

This concludes the complete analysis of the IWC's
for the real Lie algebras with » = 3. For facility in
use and understanding of this material we have con-
structed the following chart for the #n = 3 case, Re-
calling that ni = n’, the progress is never upward in
this chart and where n,, =7’ we have indicated the
direction of the IWC by an arrow. The possible dimen-
sions ny, of W by which it is possible to obtain each
result is indicated along the line representing the
WC.
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A transform procedure is applied to the integral form of the Boltzmann transport equation to obtain the particle
density in a spherically symmetric medium surrounding a central black absorber. The singular eigenfunction
expansion technique is applied to provide a general solution, and boundary conditions are derived for the gene-
ral equation for arbitrary multiplication and source distributions. Specific applications to the spherical Milne
problem and a uniform source distribution are presented to demonstrate the application of the general transform

technique.

1. INTRODUCTION

The analysis of the particle density in a spherical

medium containing a central black absorber is rele-
vant to several practical problems, e.g., preliminary
estimates for resonance escape probabilities in sys-

tems where fuel lumps are dispersed in a moderating
medium, unit-cell flux analysis for coated spherical
fuel pellets, shielding calculations for annular sources
of gamma radiation, and the analysis of fuel elements
with included burnable poisons in pellet form.
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For planar geometries, the method of singular eigen-
function expansion developed by Casel has proven
quite successful in providing expressions for the par-
ticle density in terms of a set of expansion coeffi-
cients of the normal modes of the separable integro-
differential transport equation for a variety of prob-
lems. For all but very idealized problems, however,
the expansion coefficients are solutions to Fredholm
integral equations. The advantage of the method lies
in the insight gathered from the mathematical struc-
ture of the solution, the practical information derived
from various approximations, and rapidly converging
numerical techniques developed by several authors
including Mitsis?, Mendelson3, and Bond4,

The straightforward extension of Case's method to
nonplanar geometries has been attempted by several
investigators with little success. Bareiss and Abu-
Shumays®5 have presented solutions to the separable
Boltzmann equation; Mitsis? and Davison6;7 have given
the normal modes to a nonseparable form in spheri-
cal and cylindrical geometries with the appropriate
symmetry conditions. These normal modes have
proven useful for a specific application by Erdmann
and Siewert8, where they were able to deduce the
expansion coefficients by an intuitive approach. How-
ever, no method has been developed by which the ex-
pansion coefficients may be determined in general,

The most promising method of mathematically analyz-
ing nonplanar problems has been the development of
suitable transforms which reduce the integral equa-
tion to a new integro-differential equation amenable to
solution by the singular eigenfunction expansion
method. Leonard and Mullikan? were the first to sug-
gest this idea in an application involving neutron trans-
port, However, the utility of the concept was demon-
strated by Mitsis2 in solutions to single region criti-
cal problems in spherical and cylindrical geometries.
The mathematical sophistication of the method was
finalized by Gibbs10 in a general formulation of the
transform method for arbitrary homogeneous, convex
bodies.

The purpose of this paper is to extend the work of
Mitsis and Gibbs to include a nonhomogeneous medium
consisting of a moderator surrounding a central black
absorber. The development of the transform proce-
dure is presented in Sec. 2. The application of the
method to 2 homogeneous problem, i.e., the classic
spherical Milne problem in Sec. 3, and a solution to the
nonhomogeneous problem of a uniform source dis-
tribution are presented in Sec. 4.

2. TRANSFORM TECHNIQUE

We consider a moderating medium surrounding a cen-
tral “black” (infinite absorption) cavity. Under the
assumptions of isotropic scattering and sources and a
uniform, homogeneous medium, the mono-energetic
particle density satisfies the equationi?

n(r) = [, [en(r’) + SENK(|x' —x|)dV,

where #(r) is the particle density at position vector r,
¢ is the mean number of secondaries per collision,
S(r) is the volumetric source distribution, V is the
domain of the moderating medium, r is measured in
number of mean free paths, and

reV,(2.1)

Klr| = e lrl/dniri2, 2.2
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Under the assumptions of symmetry, Eq. (2. 1) reduces
to

rulr) = fol d_ss_ f;m ar' v’ s[enlr’) + Str')]

X [exp (:it;——r’) — exp (w
L2 — a2)1/2>]‘
s

The straightforward application of the transform
techniques employed by Mitsis2 or Gibbs? is not pos-
sible, since the exponentials in the kernel are not
compatible, in the sense they are not annihilated by
the same differential operator, or from the Gibbs
approach, the limits on the domain of definition V,
Eq.(2.1), are a function of the variables of the null
operator.

(2.3)

Familiarity with the linear exponential part of the
kernel leads to an examination of the integral

1= 15 [P ar Yentr) + S0

2 . g2\1/ 12 /
RN R

X exp <~

in, an attempt to convert 7 to a form which will be
compatible with the integrals over the first part of
the kernel. To accomplish this we make use of the
identity 12

[ _ /! s —
rp(FOEZ N ol () 60,0, 2.9

where
11((01/1)3)«/32 —1?)

§2 — v

(2.6)

G(v,s) =v2 8(v—s)+av

and ll(x) is the modified Bessel function of the first
kind, We substitute Eq. (2. 5) in Eq. (2. 4), interchange
the order of integration over s and v, and write Eq.
(2.4) as

1
rnly) = fo du[% fardr’ v’ s{en(r’) + S(y’)] e -

vy ,1 .
e f ds G(, 8) fwdr’ v’ slenlr’) + Str7)]
uz v S a

(72 _ 42)1/2
X exp<_.£’_’___s__“_).__.)+ ‘%_ frm ar’ v’

X 3 (en@r’) + S(r")) e"“'”/“] 2.7
We now have a choice of transform methods: a first
order or a second-order differential operator may be
applied to suitable definitions of the transform func-
tion derived from Eq.(2.7). The author has followed
both procedures, and equivalent results are obtained.
We choose to present the former method for reasons
of clarity and familiarity with plane geometry particle
transport analysis.

We define the transform functions

Y, u = ’!11“ fydr' ¥ S{en(r’) + S(r')]e 7" Ve

-7/} 1
e J ds Gly,s) [ ar' v slentr?) + S@r7)]
“2 w8 a
(12 — g2)1/2
X exp(it%—>, pe(0,1), (2. 8)
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and
Wr,— ) = IE [Zdr v sfentr) + Str)}etrrs,
pe(0,1). (2.9)
Equation {2, 7) becomes
rnlr) = J5 Vo, W dy, (2.10)

which, if the appropriate expression for y(r, ) can be
found, provides the inversion transform for the par-
ticle density. The definitions in Egs.(2.8) and (2.9)
were selected so that the transform function y(r, u)
would be annihilated by the operator (for the homo-
geneous case)

1
o=[p_a_+1—%f_1dw}. (2.11)

or
Indeed, upon differentiating Eqs. (2. 8) and (2.9) we
find

U ;; Y, w + ylr,p = % [enlr) + S(r})]

=% -11 Ylr, pay’ +ﬂ72-)1- (2.12)

We recognize Eq.(2.12) as the inhomogeneous equa-
tion encountered in plane geometry transport. The
normal modes to the homogeneous equation are well
known, the appropriate completeness properties! have
been demonstrated, and orthogonality relationshipsl3
have been derived. In summary,

Vi, p) = {7 olv, wh; (2.13)
there are two discrete eigenvalues v, satisfying the
dispersion relation

1 =cvy tanh=1(1/v,) (2.14)

and a set of continuum modes for v on the real inter-
val [-1, 1],

(2.15)

cy P
2

- +A(v) 8(v —p), pe[-1,1],

(v, p) =

and

My) = 1 —cv tanh~1(v). (2.16)
Here P denotes that integrals over these functions are
to be considered in the Cauchy principal value sense
and G(X) is the Dirac delta function. The orthogonality
relationships may be written as

L dn Wi ov, ) ¢(v, ) = W) N (v — v'), (2.17)

where for pe[—1,1):

a=-1,
W(u) = u,
1
Np) =z< V%l: < ——:l, V=1,
2 vE—1 v3
N{v) = [)\2(1/) + %71 2}, ve [-1,1];
for p < [0,1]:
a=0,

W) = (vo — 1) v(w),
- cp
2y (—p) (v —p2)’

x(2) = exp|:—% fol _J\_f% <1 + lc_’_12“2> In(u — z)]

am

W(V)N(V) = _<£'g'9)2 X(Vo)y V="V

W) NW) = (vg — v) 9(¥) [)\2(1/) +("—‘2‘E>2} . ve[o0,1].

A useful technique in finding a particular solution to
Eq.(2.12) is given in Appendix A. There it is shown
that a particular solution %(p) is given by

Ylx, ) = [dv [1/NW] o, 1) dy(x,0),  (2.18)
where ¢,(, u) satisfies
a
u —‘p—‘;fl’—“—) + ¢,(x, B) = S(x). (2.19)

(We have used the integral notation in the above equa-~
tion symbolically to represent both discrete eigen-
functions and the entire continuum set, v & [—1, 1].)

The final step in the transformation process is to
provide boundary conditions to which the solutions of
Eq.(2.12) must be subject. This procedure can be
shown to be equivalent to that used by Gibbs to deter-
mine his expansion coefficients, although his method
might be considered more fundamental since he in-
sures the derived form of his transform function is
consistent with the defined form. The boundary con-
dition approach appears more simple for this prob-
lem, however. From Egs. (2. 8) and (2.9),

BC: (1) W(OO,_ H) = 05 pe [0) 1]; (2- 20)

6) wlaw) ==52 "L 6, 0) ["ar 7
pz ks a

pe [0,1]. (2.21)
The general procedure to be followed is then to obtain
a particular solution [Eq. (2. 18)] for the problem of
interest and use sufficient homogeneous solutions to
insure the conditions necessary for completeness?! in
trying to meet the boundry conditions are met. Having
determined Y(r, u), we can obtain the particle density
from Eq.(2.10).

We note that unlike the homogeneous media problems
BC (ii) contains the particle density. This leads to
Fredholm integral equations for the expansion coef-
ficients, However, considerable mathematical insight
can be gained from the form of the solution derived
by this method, certain approximations yield valuable
asymptotic results, and the numerical convergence,
either a Neumann series method or a discrete ordi-
nates approach, is expected to be rapid. In the follow-
ing sections we demonstrate the application of the
method to several problems of practical interest.

3. SPHERICAIL MILNE PROBLEM

A. Transform Solution

We seek the particle density in an infinite, purely
moderating medium (¢ = 1) containing a central black

J.Math. Phys., Vol. 13, No. 2, February 1972



206 0. J. SHEAKS
absorber of radius “a”. This example was selected and
because of its classical nature and for its practical e Yu lds s
P K, v) = 2 (1B 6,s) [U

applications for determining the effect of curvature
on the extrapolation distance, a necessary parameter
used extensively in reactor physics. The classical
assumption that ¢ = 1 is not a necessary condition,
and the methods employed apply directly for any ¢ < 1
case.

As in the planar Milne problem, the discrete eigen-
functions become degenerate since vy =+ 0 as ¢ - 1;
the discrete modes then merge into a common value,
3. To meet the boundary conditions requires the addi-
tion of the solution

Y, p) = 340 — p),

The general solution to Eq.(2.12) is then written

A, A_ 1

VoW =t =) ] dvoln peh AL,

(3.1)
where

A—=v) =0, ve(0,1],

following the traditional “source condition” of allow-
ing the particle density to diverge, but diverging more
slowly than e”/r as v — .

The application of BC (ii) leads to the equation from
which the expansion coefficients may be determined:

A, A_ 1
_§+_ + _2_‘ (a — “) + f(; dv A(U) e“’/”(I)(V, “’)

_ e rlgs e,
= 2z f” -:G(p,,s)f:odr r'n(r’)

(12 __ 42)1/2
9 exp<_(_v__§a_>_>,

3.2)

We observe that we are expanding a function which
contains the unknown density »n(»). The general pro-
cedure to be followed, when the transformation leads
to cases such as this, is to use the inversion integral
to obtain the form of the density. This result is used
to provide an integral equation from which the coef-
ficients may be determined.

Thus we utilize Egs. (3.1) and (2.10) to write the den-
sity as

1
ra(r) = Ay +Ar + jo dv A(v) e~ “-vdy,  (3.3)

where the A(v) above is equal to e-@? times the A(v)
in Eq.(3.2). The substitution of Eq. (3. 3) into Eq.

(3. 2) leads to a valid half-range (¢ € [0, 1]) expansion
and is now the equation from which the coefficients
may be determined. Due to the involved nature of the
integrals encountered, we reserve the details for
Appendix B. After these simplifications, Eq. (3. 2)
becomes

A A_ ;
S+ a— [ avely, wAw)

2 2
== B+ [ dAWKL ), (3.4)
where
B(W) = ALK, %) + A e
a 1 11("/“5) §& — U
(wﬁf“ as BHUEEE )) (3.5)
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uz v s 0 ¢

x et ¢(— v, 1) G(t,s). (3.6)
The form of Eq. (3. 6) is comparable to that obtained
by Sahnil4 using a different technique. Applying the
operator

1
b au ),
we obtain
A, AL 1 1
- T (@a—zy) = fo dv' A(v) fo du () K(u, v')

~ [l ey B, (6.7

where z is the well-known planar Milne extrapola-
tion distance, Similarly, applying the operator

[ awywetr,w, v elo],

yields

A_v
—— + N(@) () A(v)

4

= [ v Aw) [ duyw o mEw ) g o

1
- ]0 dy y(p) ¢(v, u) B(w).

The problem has now been reduced to solving Egs.
(3.7) and (3. 8) for the expansion coefficients, A_ and
A(v). (Since the equations are homogeneous in A, we
arbitrarily normalize this constant to —1.) We may
now solve for A_ in terms of A(v) in Eq. (3.7) and
substitute this result in Eq.(3.8). This procedure
leads to an inhomogeneous Fredholm integral equation
for A(v). Although the analytical representations of
the kernel and the inhomogeneous term are compli-
cated, all functions contained therein are tabulated
and thus present no special problems for the appli-
cation of computer methods. We do not pursue the
numerical solution for the coefficients in this analy-
sis, However, in previous cases in which Fredholm
equations of this type were encountered, rapid con-
vergence of the Newmann-type series was found to
be the case.

B. Analysis of Results

In this section we examine the results in several
limiting cases of the black sphere radius and com-
pare the form of the solution with previous work.

Having provided a method whereby the coefficients
can be determined to a required accuracy, we write
the density as

e~ (r-a)/v

nir) = A~ 2+ [Pavaw) (3.9)
This form may also be derived using the eigenfunc-
tions developed by Davison? for the homogeneous
integro-differential equation for the angular density.
It is also the form used by Sahnil4 in his analysis.
Also, as “r” becomes much greater than “a”, the con-
tinuum becomes negligible compared to the discrete
term. Thus the density becomes »n,(r) = A_ — (1/7),



TRANSPORT IN INHOMOGENEOUS SPHERES

which can be derived from the diffusion equation for
no absorption. Thus, asymptotically our solution is

of the correct form. The extrapolation distance x may
be defined in the usual manner.

dn(r)

ar
where n,{v) is the discrete part of the density. Physi-
cally, this states that the asymptotic density extra-
polates to zero at v = a — A, Using the results of
Eq.(2.9), we obtain

A =nyr)

r=a/L>s

= g24_ — (3.10)
In the limit as @ — « the black sphere begins to lock
like a plane to incident particles and we would expect
A to approach z, the extrapolation distance for plane
geometry. To show this we begin with Eq.(3.7). From
Eqs. (3.5) (3.6), B(p) and K(u, v) are obviously of ex-
ponential order for large “q” and hence approach zero
in the limit. Equation (3.7) reduces to — 3 + 3A_

(@ —2p) =00rA_=1/(a — z,).

The extrapolation distance thus becomes

A =la2/(a — zg)) —a =azy/la — zp), (3.11)
which does indeed approach z, as “a” increases with-
out bound.

Another interesting approximation which can be ex-
amined analytically is the nonphysical result for x as
a — 0. Classically, this result should result in a value
of % for A, although physically this problem for a = 0
would not be well posed, since there would be no sink
for the particle density produced by the source.

Using series expansions for the transcendental func-
tions in Eqgs. (2.5) and (2. 6), we can show that as
a—0;

K(,J'y V) ‘*”ff)(“ v, p’), (3-12)
and
B A_ a? .
(M)—’.—z—<ﬂ"—a+§;§>—é- (3.13)
Equation (3. 4) in the limit thus becomes
A_ 1
—it g la—p + [ dv AG) o(v, b)
+4 f dv A(v) + m
A_ . a? L
—-*2-'((1'—"}. ‘2—‘1‘2—> Ze (3.14)

We have arrived at a half-range expansion which
would result in an integral equation for A(v), which
certainly presents a formidable task if an exact re-
sult is to be obtained. However, we note that by defin-
ing A(v) = A(— v) we can write Eq. (3.14) as
1

1— [ dv AW ¢(v,p) = A_ a2/4p2. (3.15)
It is trivial to show the above is a valid full-range
expansion for even functions of p and ¢ = 1; thus full-
range orthogonality is applicable. We operate with

1
i L u 42 and make use of the fact that

1
[ an 2o, m) =0 (3.16)

207
to obtain § = A_3a%2 or
A_=4/3a2, (3.17)
The extrapolation distance using this result is
A= (4/3a2)a2 —a —4% (3.18)
as
a—0.

4. THE INHOMOGENEOUS EQUATION

We consider an example of a uniform volumetric
source distribution in the moderating medium (¢ < 1)
because of its practical application in cell theory in
reactor physics and to demonstrate the use of the
particular solution derived in Sec.2. We assume an
infinite medium for reasons of simplicity. This res-
triction is easily removed by applying directly the
techniques used in finite slab geometry neutron trans-
port when finding solutions for the transform function
Y(r, ). Following the procedure developed in Sec. 2,
the transform equation for a uniform source of
strength S, (#/cm3 — sec) is

\b S,
57 0,0 Ty, ) —f Yo, w)dy + 57, (4.1)

with boundary conditions

(i) vnlr) diverge no faster than v at infinity

(ii) Yla, p) = e f""dw r

%[C"(”’) +8,]- exp(:(zlz';—az)l/i)

The particular solution is given by

¥,r, ) (4.2)
where

d)p(’r’ H) = _lésy(r - “‘)

fm vo,(r, VIolv, u),

is the solution of

2,7, 1)
“.—p—

e + ¢, = 58,7,

Again the integral in Eq. (4. 2) is used symbolically
to denote the full set of normal modes.

We can simplify Eq. (4. 2) by noting the following
expansions,

1 —C fﬁ !”d)(V’ P'), (4. 3)
12 = I ol ), (4.4)

are applicable, reducing the particular solution to
—w/(1—c).

We now write the general solution as

Yr,p) =35, (r (4.5)

Vo, [ av Aw) e e-o/rg(v, )
- H)/(l - C)v
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=A, evod(vy, p) +

+3S,(r (4.6)
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with
1
yu(r) = A, e vy + fo dv A(v) e @-/v(v, )

+S,/(1—c). (4.7)

The application of BC (ii) yields the following valid
half-range expansion,

A€ 0 plug, p) + [ v AL, 1)

=—B(y) +f01dVA(V)K(/J, v), (4.8)

where
-a/v N Su 3—c\en
B(u) =Are " °K(g, vy) + 25, (a — u)+—(
2\1 —¢/ p2
a .1 I.((a/us)Vs% = 2
x(p.+—f dss al(a/u - )). (4.9)
por VsZ — u?

The similarity with the results of the Milne problem,
Eq.(3.4),are to be noted. Again, the form of the solu-
tion is amenable to approximation, and numerical
techniques are applicable following the application of
the orthogonality operators. Other source problems
of interest, e.g., the Green's function and the 1,7
source found frequently in astrophysics, follow with
similar ease, requiring only a knowledge of planar
particle transport techniques to solve the transform
equation. The exlension to finite media and critical
problems (¢ > 1) follows with only slight modification
of the results presented herein.

In summary, the transform procedure developed in
this paper extended the work of Mitsis and Gibbs to
include a nonhomogeneous media with distributed
sources. The results, as in most present-day trans-
port theory analyses, appear as solutions to a set of
coupled Fredholm integral equations for the expan-
sion coefficients of a set of “normal modes.” These
equations lend themselves to various approximations
which provide considerable mathematical insight into
the nature of the particle density, and, hopefully, to
rapid numerical solution. In general, the transform
technique provides a framework wherein a large class
of particular problems may be solved in a straight-
forward manner.
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APPENDIX A: PARTICULAR SOLUTION

We verify here the procedure leading to the particu-
lar solution; Egs. (2. 18) and (2. 19) satisfy

M 56; Y(r, ) + 4,0, 1) —-% f_ll Y, (r, ) dp’ ="S(r’). (A1)

We insert Eq. (2. 18) into the rhs of Eq. (Al) to give

SHEAKS

dv o, (7,
7 fm (v, w) Par Y

) d
+ fN(Z) ‘Z’(V, “’)¢p(’r‘ V)

* f]"\%y ¢, v) (‘“% f_ll é(v, ') du’) =rhs. (A2)

Equation (2.19) is now used in the first term of Eq.
(A2), yielding

)50

H f}\;'i(:j) ¢(Vr K N%E) ¢p(X’ V)¢(V; “) (1 = %)

1
—5 [, snw)dy =rhs.  (A3)

The integrals in the first term can be shown formally,
or more rigorously by a complex contour integrals,
to be

ﬁ= fﬁ;,—, oV, 1), (A4)

while the expression in wavy brackets in the second
term is zero because of the properties of the eigen~
functions ¢ (v, ).

Thus, rhs = S(r) = lhs.

APPENDIX B: FREDHOLM KERNEL DERIVATION
We wish to simplify integrals of the form

e rlgs R o oaC .,
2 fp-—s—G(p,s)f‘2 dr’ 1 En(r)

X exp <:—_(1’_’2_—_:_a_2_)1_/2> (B1)

I=—

)

We use the identity given in Eq. (2. 5) to obtain

e flds

I= =Gy, s) fﬂdr'r’ —C-n(r’)
- “2 i3 s “, a 2

x fs 4t o-mitG(t, s).

0 ;2 (BZ)

Upon interchanging the order of integration, assuming
a form of n(»’),»’ n(r’) = e"7”/v, and using Eq. (2. 15),
we may perform the integration over 7’ to yield

I=—

~af 1 s
S e [ et 6w

ool = 2)]. oaf-r(t-2)]1. (e

The definition of K(u, v) follows straightforwardly on
letting R — «. For the special case of an infinite
medium the useful integrall5,

X

f:"d,, exp[—('2 — a2)1/2/s]

= (an/2) [Hqla/s) — Y (a/s) —2/7] (B4)

may be used to reduce A{p, ) to 2 more tractable
form,

K, ) = 2E2 %H1(51.>-— y1(9.>_ i [l

Lom u p/ 7 "
y 11((a/:s);/s; —u?) . [Hl<§>_— Y1(§>“ ;27-] . (B5)
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Decomposition of the Principal Series of Unitary lrreducible Representations of SU(2, 2)
Restricted to the Subgroup SU(1, 1) ® SU(2)*
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Depaviment of Physics and Astronomy, The Universily of loiwa, lowa City, lowa 52240
(Received 24 May 1971)
An explicit form is given for the unitary irreducible representations of the principal nondegenerate series of
the group SU(2,2). These representations are then restricted to the subgroup SU(1, 1) @ SU(2) and are found to
be equivalent to the regular representation of SU(1,1) ® SU(2).

1. INTRODUCTION

The examination of the assumption that the relativis-
tic scattering operator is a scalar under the trans-
formations which comprise the Poincaré group has
given new insights into possible phenomenological
descriptions of high energy scattering processes. It
enables the expansion of the scattering amplitude in
unitary representation functions, or D functions, of its
little groups provided that the amplitude is a square
integrable function over the appropriate little group
manifold. In this manner one obtains a generalization
of the usual partial wave analysis from Poincaré
symmetry of the scattering amplitude.? Toller et al.
have demonstrated that such an expansion in the
crossed channel provides a natural framework for
the Regge pole model of high energy scattering pheno-
menology.2-4

The strong forces between hadrons satisfy so-called
internal symmetries in addition to the Poincaré
space~time symmetry. In particular,the charge
independence of these strong forces is believed to be
an exact symmetry expressed by the invariance of
the scattering operator under the rotations of the iso-
topic spin group. We propose that a possible way that
remnants of broken symmetries which combine Poin-
caré and internal symmetries are retained by the
amplitude is that it continues to have an expansion in
unitary representation functions of the little groups
of the primordial symmetry group. In this work we
shall attempt to find the remnants of a symmetry
which combines the internal isotopic spin symmetry
with Poincaré symmetry. In accordance with the
above hypothesis, we shall assume that the scattering
amplitude can be expanded in representation func-
tions of a new “little group” which we take to be
SU(2,2).

SU(2, 2) is a semisimple, 15 -parameter Lie group.
The unitary irreducible representations of SU(2, 2)
are labeled by the eigenvalues of three Casimir
operators.5—7 SU(2, 2) contains the direct product
subgroup SU(1,1) ® SU(2). We obtain a Regge-like
expansion with correlated isotopic spin by interpre-

ting SU(1, 1) to be the fixed-{ Poincaré little group
and SU(2) to be the isotopic spin group. Thus the
transformations in SU(1, 1) ® SU(2) are physical
space—time and internal symmetry transformations.
By restricting the SU(2, 2) transformations to include
only those in the SU(1,1) ® SU(2) subgroup,an irre-
ducible representation of SU(2, 2) becomes equivalent
to a reducible representation of SU(1,1) ® SU(2). The
physical significance of assuming the SU(2, 2) expan-
sion of the amplitude is found by decomposition of the
representations of SU(2,2) into irreducible represen-
tations of its subgroup SU(1,1) ® SU(2). In this work
we shall consider the decomposition of the principal
nondegenerate series of representations of SU(2, 2).
The representations of the principal nondegenerate
series are labeled [x;, x 5, M], where x, and x, are
real and M is integer or half-integer. Mackey's sub-
group theorem provides a means of decomposing the
representations of the group G into representations
of its subgroups provided the representations of G
can be written as induced representations.8:9 In Sec.
2,the elements of SU(2,2) are parametrized in a
manner suitable for inducing the principal nondegene-
rate series [Xl, Xz’M]- In Sec. 3, we state Mackey's
theorem and carry out the decomposition of the prin-
cipal nondegenerate series into irreducible represen-
tations of SU(1,1) ® SU(2).

2. THE INDUCING SUBGROUP OF SU(2,2) AND ITS
RIGHT COSETS

The transformation g € SU(2, 2) can be represented
by 4 X 4 complex matrices which satisfy:

(a) unimodular, lgl=1

o P (1o I 0
seudo-unitary, = . (2.
p y g 0—1 g 0—1 (2.1)

where [ is the 2 X 2 unit matrix. The Iwasawa de-
composition of a noncompact Lie group G is given by

G = NAK, (2.2)
where N is a nilpotent subgroup, A is an Abelian sub-
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Decomposition of the Principal Series of Unitary lrreducible Representations of SU(2, 2)
Restricted to the Subgroup SU(1, 1) ® SU(2)*
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An explicit form is given for the unitary irreducible representations of the principal nondegenerate series of
the group SU(2,2). These representations are then restricted to the subgroup SU(1, 1) @ SU(2) and are found to
be equivalent to the regular representation of SU(1,1) ® SU(2).

1. INTRODUCTION

The examination of the assumption that the relativis-
tic scattering operator is a scalar under the trans-
formations which comprise the Poincaré group has
given new insights into possible phenomenological
descriptions of high energy scattering processes. It
enables the expansion of the scattering amplitude in
unitary representation functions, or D functions, of its
little groups provided that the amplitude is a square
integrable function over the appropriate little group
manifold. In this manner one obtains a generalization
of the usual partial wave analysis from Poincaré
symmetry of the scattering amplitude.? Toller et al.
have demonstrated that such an expansion in the
crossed channel provides a natural framework for
the Regge pole model of high energy scattering pheno-
menology.2-4

The strong forces between hadrons satisfy so-called
internal symmetries in addition to the Poincaré
space~time symmetry. In particular,the charge
independence of these strong forces is believed to be
an exact symmetry expressed by the invariance of
the scattering operator under the rotations of the iso-
topic spin group. We propose that a possible way that
remnants of broken symmetries which combine Poin-
caré and internal symmetries are retained by the
amplitude is that it continues to have an expansion in
unitary representation functions of the little groups
of the primordial symmetry group. In this work we
shall attempt to find the remnants of a symmetry
which combines the internal isotopic spin symmetry
with Poincaré symmetry. In accordance with the
above hypothesis, we shall assume that the scattering
amplitude can be expanded in representation func-
tions of a new “little group” which we take to be
SU(2,2).

SU(2, 2) is a semisimple, 15 -parameter Lie group.
The unitary irreducible representations of SU(2, 2)
are labeled by the eigenvalues of three Casimir
operators.5—7 SU(2, 2) contains the direct product
subgroup SU(1,1) ® SU(2). We obtain a Regge-like
expansion with correlated isotopic spin by interpre-

ting SU(1, 1) to be the fixed-{ Poincaré little group
and SU(2) to be the isotopic spin group. Thus the
transformations in SU(1, 1) ® SU(2) are physical
space—time and internal symmetry transformations.
By restricting the SU(2, 2) transformations to include
only those in the SU(1,1) ® SU(2) subgroup,an irre-
ducible representation of SU(2, 2) becomes equivalent
to a reducible representation of SU(1,1) ® SU(2). The
physical significance of assuming the SU(2, 2) expan-
sion of the amplitude is found by decomposition of the
representations of SU(2,2) into irreducible represen-
tations of its subgroup SU(1,1) ® SU(2). In this work
we shall consider the decomposition of the principal
nondegenerate series of representations of SU(2, 2).
The representations of the principal nondegenerate
series are labeled [x;, x 5, M], where x, and x, are
real and M is integer or half-integer. Mackey's sub-
group theorem provides a means of decomposing the
representations of the group G into representations
of its subgroups provided the representations of G
can be written as induced representations.8:9 In Sec.
2,the elements of SU(2,2) are parametrized in a
manner suitable for inducing the principal nondegene-
rate series [Xl, Xz’M]- In Sec. 3, we state Mackey's
theorem and carry out the decomposition of the prin-
cipal nondegenerate series into irreducible represen-
tations of SU(1,1) ® SU(2).

2. THE INDUCING SUBGROUP OF SU(2,2) AND ITS
RIGHT COSETS

The transformation g € SU(2, 2) can be represented
by 4 X 4 complex matrices which satisfy:

(a) unimodular, lgl=1

o P (1o I 0
seudo-unitary, = . (2.
p y g 0—1 g 0—1 (2.1)

where [ is the 2 X 2 unit matrix. The Iwasawa de-
composition of a noncompact Lie group G is given by

G = NAK, (2.2)
where N is a nilpotent subgroup, A is an Abelian sub-
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group, and K is the maximal compact subgroup.1® We
shall find it convenient to express the Iwasawa de-
composition of SU(2, 2) in a basis in which the matri-
ces of A are diagonal. We make the unitary trans-
formation

g—migm, (2.3)

where

1[I il
W = —= .
V2 \il I
In this basis Eq. (2.1) becomes1!
0 i 0 il
gt = , c SU(2,2). (2.4
(_H O>g (_ﬂ 0) g (2,2). 2.49)

Specifically for SU(2,2),A is a two parameter Abe-
lian subgroup, the nilpotent subgroup N has six para-
meters, and the maximal compact subgroup K is
SU(2) & SU(2) ® U(1) which has eight parameters. In
the basis of Eq. (2. 4) in which A is diagonal,we have

et 0
e — ¢ 0
0 e
4= et 0
0 e« 3
0 e
with o and § real. The nilpotent subgroup N has the
form
1 1 g\
(o1) (5 3)
01 01

1 g\-1'
o (9
01

where 3 is a complex number and H(z) is 2 X 2 Her-
mitian matrix defined as H{(n) = nyI + n*o with n,
~and n real. The compact subgroup K takes the form

(2.5)

) (2.6)

k ik_
K= ( + > 2.7
—idk_ k,
where )
k, = %(ule'“#/z iuzeiw/z),

and 4, , are two independently parametrized 2 x 2
unitary, unimodular matrices:

cos(6, /2)ei (yv/2 — sin(8, /2)e‘(Pi‘”i)/2)
©7 \sin(6,/2eihi w2 cos(6; /2)e ki v?

i=1,2. (2.8)
The matrices of Egs. (2.5), (2. 6),and (2. 7) were ob-
tained by making the Iwasawa decomposition of the
associated Lie algebra which is isomorphic to the
Dirac algebra, exponentiating, and then making the
transformation of Eq. (2. 3).

The inducing subgroup H is defined to be8

H = NAC(A), (2.9

where C(A) is the centralizer of the maximal com-
pact subgroup K with respect to 4, i.e., the subgroup
of K which commutes with A. In the SU(2, 2) case,
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it is simply a phase,

e i?/2 O

et*ﬁlz

Cl4) = (2.10)

e iv/2
Q ei¥/2

Combining Egs. (2. 5), (2. 6),and (2. 10) according to
the definition Eq.(2.9), we see that H is the set of
transformations
€N H(n)(e*A)— 1t
H = ( (n)(en) )

0 (eat)-1* (2.11)

where « is real and A is the set of elements of the
form12

-1
A:<q »3),
0 ¢

with ¢ and 3 complex numbers.

(2.12)

Induced representation theory makes use of a right
coset decomposition

SU(2,2) = YHg, (2.13)
with respect to the inducing subgroup A. A set of
right coset representatives {g,} must be a realiza-
tion of the coset manifold SU(2, 2)/H so that each
point in the manifold corresponds to a representa-
tive. The manifold is covered up to sets of coset
measure zero by two disjoint sets of coset repre-
sentatives {g?} and {g’} of the form

w [ ¥ 0
£°= Z®-1t Hx)(z)®)-1t ) (2.14)
in which the 2 X 2 matrices H{x) = xOI + x°0 with xg,
x real.13 The matrices Z® are defined by

Z&)___(l 0 )
z =1

with z a complex number. The entire set of coset
representatives {gf} is a subgroup of SU(2, 2) but
the subset {g$’} cannot be reached continuously from
the identity by transformations solely within the
coset representative subgroup.l4 The union YHgt?

is not a subgroup so that this coset decomposition is
not valid if the center of SU(2, 2) is removed.15

(2.15)

The principal nondegenerate series of representa-
tions of SU(2, 2) labeled by [x;, x5, M] are induced on
the representations of the inducing subgroup H given
by Eq.(2.11). In general, given a noncompact group

G with right coset decomposition G = YHg, with
respect to its inducing subgroup H, the induced repre-
sentations are on a Hilbert space JC(U) of functions
over the group with the property that

HU) ={f(8)|f(hg) = L(k)f (g) ¥h c H,g € G}

in which L(%) is a representation of the subgroup H.
Since every g = hg, and k'h = k", it is sufficient to
consider only functions over the set of coset repre-
sentatives {g,}. The unitary induced representations
U (g) are given by

(2.16)
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UB(g)f(g,) = Vx(g,2,)/(8.8)
= Vk(g,8 ) L") (g;),

where the primed elements refer to those that have
been obtained from the decomposition of the element
g' = g.g into a right coset element g’ = h'g,. In par-
ticular, SU(2, 2) has the right coset decomposition
given in Eq.(2.11) and Eq. (2. 14). The function
k(g,8;) is the Jacobian of the transformation of the
coset measure du(g.8,) = k(g,,8,)du(g,).1% The
representations (one—dimensionalg of the inducing
subgroup H are given by

(2.17)

h - L) = (e¥)ixilglixa(q/lql)2u (2.18)
for each h € H.17 x, and y, are real and M is integer
or half-integer. The principal nondegenerate series
is induced on L(h),

UM (&) = (e=)ala 2 (q/ g (gL,
(2.19)

where the primes refer to the decomposition of the
element Z_g = h’g/. The norm on XUlxix2Ml)ig

Il = fSU(z’z)/Hdu(gc)lf(gc)|2

with coset measure du(g,) = d(ReZ)d(ImZ)dx ydx dx,

dx 4. The coset transformation g.g = h’g/ is obtained
by matrix multiplication of elements with the proper
form. In particular, we must find the parameters a’

and ¢’ of #’, the 4-vector (x;x’) in H(x’), and the com-
plex parameter 2z’ in Z'® of g'® ., In terms of the

C

corresponding 4 X 4 matrices g kg = n'g/ is

(2. 20)

z 0 e*A\ H(n){e*A) 17 Z 0

Z77H(E) 27\ 0 (emn)H Z-VH(x) 71
eOUA/ H(nr)(ea'Al)—lT Z’(i) 0

0 (ea’Al)-lT (Zl(i))—]_TH(x,) (Z'(i))"lT y

(2.21)
where Z = Z® and Z = 2, The cases of Z0O, etc.,
follow trivially. Carrying out the matrix multiplica-
tion, we obtain sets of 2 X 2 matrix equations which
are soluble for the primed variables,

(e*'A'Z' ®)WHE") = Z-1[] + HEH ) [(e*AZ)VH(x)

+ Z 1 H®E)(e?AZ)  (2.22)
and

(e*'A'Z' @)1t = Z-1[ + H(x)H(n)](e*AZ)~11. (2.23)

Substitution of Eq.(2.23) into Eq. (2. 22) gives a 2 X 2
matrix equation for H(x"),

H(x') = H(x) + e2%(AZ)t[I + H(x)H(n)] 14 (X){AZ).
(2.24)

A solution to the set of equations in Eq. (2.24) will
exist if the determinant A (x,n) = | I + HE)H (n))| does
not vanish.18

It is easy to show that the matrix H(y) = [I

+ H(X)H{n)"1H(x) is Hermitian. AZ in Eq.(2.24) is a
general element of the right cosets of SL(2, C) defined
by Naimark in Ref.12,i.e.,almost all 2 x 2 complex
matrices b € SL(2,C), bl = 1, can be written as

b=AZ. [If Z=ZO,the transformations contain
improper SL(2,C) elements b = AZ®) with |6l =— 1.]
Then with b = AZ, Eq. (2. 24) contains the transforma-
tion H(y’) = bTH(y)b of the Hermitian matrix H(y).

It is easy to verify that H(v’) is also Hermitian and
one can find the equations fory, p=0,1,2,3. The
SL(2,C) transformations of H(y) leave | H(y)| =% —
y2 invariant and correspond to Lorentz transforma-
tions of the 4-vector y —y’. The solution for the 4-
vector x/ is given by

x =%, +e2°fyp’, p=01,23, (2.25)
with yp’ the 4-vector obtained from
¥, = (1/8)x, — n,x2) (2. 26)

by the Lorentz transformation corresponding to AZ.
The quantity A(%,n) =1 + 2(X-0 + ¥gn,) + 2n2.19

In order to find @’,q’ and z2’, we rewrite Eq. (2.23)

e¥N'Z'® = Z[I + HX)Hn) "V (e*AZ). (2.27
Consider the determinants of the left and right sides
of Eq.(2.27), | LS|l = (+)e2*' and | RS|| = e29/A (%, n).
A solution to Eq. (2.27) can exist if [|LS]| = I|RS/,
that is,

(2)e2e’ = e22/A(x,n) (2.28)

and Eq. (2.28) is the solution for a’,

The choice of sign in Eq. (2.28) depends on the sign
of A(X,n). The plus sign is chosen if A(X,n) > 0 and
the minus if A(x,z) < 0. Thus whether g = hg® in
Eq. (2.21) moves g8 to g™ or g/© is determined
by the sign of A(x,n),

EPng® =g ® it Ax,n) >0,
g(;t)ngc(i) = h'cg'(—)

The sign of A(¥,n) will always determine in which
piece of the coset space g’ will lie. This result is
not surprising because e2>A(¥,n) is the determinant
of the 2 x 2 submatrix g5, of g’ = h'g/®,15

In order to find ¢’ and z’, we note that the LS and RS
of Eq. (2.27) are 2 X 2 complex matrices with arbi-
trary real (# 0) determinants. These matrices can be
written as right coset elements by a trivial extension
of the SL(2,C) coset decomposition in Ref.12. Con-
sider an arbitrary 2 x 2 complex matrix

<‘111 ‘112)

A= .

@31 923

We require [|Af to be real, but nonzero so that A con-

tains seven parameters. If a,, # 0, A can be decom-
posed in the following manner:

<‘111 012> s §> 10
az; Gz3)  \0 ¢)\w 1)’
where || Al = st. Application of this decomposition

to the left-hand side of Eq. (2.27) and comparing
gives, after some algebra,

(2.29)
if A(x,n) < 0.

(2.30)
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()g" =VIaGE,n)| (B 1,F, — by,yFy),
(#)2" = (011F 1 = by F,)/(B1,F 5 — b5,F ),

where b = AZ and

(2.31)

Fi=2z[1 + (ky —X3)(ng — ng)(x, — i%,)(ny + iny)]

— £y + x3)ny +ing) — (B, + Xp)lng —m3),  (3.32)
Fo =2[(% — %k )ng +ng) + (K5 —X3)(ny — iny)]

— 1+ (xy +X3)ng +n3) + (%, + i%,) (0, — iny)]

(2.33)

The choice of sign in Eq. (2. 31) is the same as in
Eq. (2. 28). Equations (2.25), (2.29), and (2. 31) are
the transformation equations necessary in Eq. (2.19)
to complete the definition of [x,, xo,M].

3. THE CONTENT OF THE REPRESENTATIONS
OF SU(1,1) ® SU(2) IN [, xp, M]

The following summary of Mackey's subgroup theo-
rem contains an outline of the procedure that must be
used in its application. We are given an induced
representation U1 (g) of a group G on a Hilbert
space J(UlL1) defined by Eq. (2. 16). We wish to find
the content of the representations of a subgroup

G C G. Consider the double coset decomposition

G= gHgDG, (3.1)
where H is the inducing subgroup for UlLl(g). The
double cosets are nonoverlapping. The subspace
Hp(ULLY) consisting of the functions over one double
coset,

{f(2))z e Hg .G}

forms an invariant subspace of J((UI*]) with respect
to all right transformations § € G. The functions of
X, therefore are a basis for a (reducible) represen-
tation of G. Since the double cosets do not overlap,
JC(UL)) decomposes into20

(3.2)

sty = |® aup)se (wieh), (3.3)
Specifically, Mackey's subgroup theorem states that
the representations of G contained in ¥ are equiva-
lent to representations induced by a subgroup H, C G
given by
Hy=g5lHgyNG (3.9
The representations of the new inducing subgroup
Hj, are obtained from those of # by
Lp(hy) = L(ghy8y1) for hy € Hy,. (3.5)
Since the functions of ¥, are a subset of 3, they have
the property

A&p8) = flephpg,) = Aeohy 85°8p &) = LD(hD)f(gD(gfc)-)

- 3.6
Thus, for any one double coset g,,G, we may restrict
ourselves to functions over elementsg,§,. Letus
define F(g,) = f(gp&,). Then the representation of G
induced by H,, is given by

UlLnl(2)F(g,) = F(8Z) = Ly (hy)F(&)), (3.7
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where 8 & = hpZ!. The definition F(g,) = f(&p2,) and
Eq. (3.7) establish the equivalence with 4C,. The
norm on the set of functions, {F}, is given by

1F)2 = fa/aD du(@)ll F(g)ll 2.

Note that UlLp], in general, is a reducible representa-
tion of G which still must be decomposed into unitary
irreducible representations of G. However, Mackey
has shown that UILp] is contained in the regular
representation of ¢G. The decomposition of the regu-
lar rvepresentalion into irreducible representations
is known for some noncompact groups.

(3.8)

The above description of Mackey's subgroup theorem
implies that it is necessary to have a double coset
decomposition of SU(2, 2) with respect to its inducing
subgroup H and SU(1,1) ® SU(2):

SU(2,2) = E}JHgD[SU(l, 1) ® SU(2)]. (3.9)
To this end, we shall parametrize SU(1,1) & SU(2) in
a manner similar to Eq. (2. 2) for SU(2,2). In the
basis in which the invariant matrix is as in Eq. (2.4),
we find that the Iwasawa decomposition of SU(1,1) ®
SU(2) is given in terms of the matrices

N I nl
N = y
017
N ex] 0
A= .
0 e«

and

(3.10)

P < 7 cos(W/2) @ sin(?p/z)>

T\ — @ sin(¥/2) @ cos(@/2))’
with # and @ real. The matrix # € SU(2) is para-
metrized as

. [cos(6/2)e i ®D/2 — gin(§/2)e-{i-0¥2
= N A (3.11)
sin(6/2)e*XE9/2  ¢cos(d/2)e*ili)/2

Then SU(1,1) ® SU(2) = NAK and 4, N, and & are sub-
groups of A,N,and K in Egs. (2.2), (2.5)-(2.7).

A right coset decomposition SU(1,1) ® SU(2) = Lcu?g‘c
can be obtained following the procedure of Sec.2. One
finds

~ edd Te g
H= ( . > (3.12)
0 e
and
) (I 0> (3.13)
= \zr 1/ )

where % is a real number. Almost all § € SU(1,1)®
SU(2) = NAR can be written § =hg,, h ¢ H, §. €
{,g?c& , except those transformations with subdetermi-
nant H 322 \ =0.

The unitary irreducible representations of SU(1,1) ®
SU(2) can be written as Kronecker products of the
representations DIA(D) of SU(1,1) and DH)(@) of SU(2),
where © € SU(1,1), # € SU(2). Then the representa-
tion [r,I] is given by the product DN (3) & DUI(5).21,22
The diagonal labels j3,j; and 4,3 of the matrix
elements D}:j]é(z?) x DY, (@) are constrained by23
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iy +j, = integer, i3 +j3 = integer. (3.14)
To find the double coset representatives g, we first
note that the g, must themselves be right coset ele-
ments of SU(2, 2) with respect to H so that we may

write

Z 0
where24
1 0

Next, consider the action of an arbitrary £ €
SU(1,1) ® SU(2) on a double coset representative
&é =& € SU(2,2). Since £ can be written as fig, and
g as hg,, the transformation of g, is also given by
&g, = hg, (3.17)
In general, the set of all transformations in SU(1,1)
® SU(2) will map a particular representative g, onto
a set of SU(2, 2) right coset representatives

gD—%{g(ci)}D. If one can find the set {g,} which is

mapped uniquely onto {g¥P}, this will be the required
set of double coset representatives for Eq. (3.9).

In terms of the appropriate transformation matrices,
Eq. (3.17) becomes

Z, 0\ [edanedn\ (I 0
ZpVH(x,) Zz1 \ 0 e J\zI1

_ [exh H(n)(exn)—2t z® 0
“lo (e2A)-17 (Z(i))'lTH(x) (Z(:t))—l‘r)'

(3.18)

These equations are a special case of Eq.(2.21) for
the transformation of the cosets of SU(2,2). It is
found that by fixing the parameters in g, to be Z, =
1, x%po = %p3 = 3,and xp; = %5, = 0 the resulting
double coset representative is mapped by the trans-
formations in SU(1, 1) & SU(2) onto almost all

SU(2, 2) right coset representatives {g.}. Thus the
only double coset representative required for the
subgroup theorem is

Z 0 10
&=, . Zp= . (3.19)
(I +05) Zp1T 11

and almost all g € SU(2, 2) can be decomposed as ele-
ments of the double coset Hg, SU(1,1) ® SU(2). With
this choice of g, ,the mapping of the coset parameters
of £ under the transformation given in Eq. (3. 18) is

Xo=%q 2 17/21,

x5 =+ |#/2]cosf, (3.20)

Xy +ixy =¥ |7/2|sin €7,

;2 sin(6/2)(la@]e®) + cos(6/2)
cos(6/2)(1a() | e#) # sin(8/2)

(3.21)

and z =+ e~

where A(f)) =1 + fi and v = Vi3 +%% + %3. The
choice of signs in Eqgs. (3.20) and (3. 21) corresponds

to the sign of A (7). The upper (lower) signs are
chosen if A(#) > 0 {A(#) < 0). The sign of A(#) deter-
mines whether g, is mapped into {g )} or {g{7}.

With G = SU(1,1) ® SU(2) in Eq. (3.4), we note that
the new inducing subgroup Hj, is the set of elements
satisfying

H, ={£|g € SU(1,1) ® SU(2), g2 = hgp}. (3.22)

Thus Hj, contains the elements SU(1,1) & SU(2) which
send g, into itself. From the transformation g,2 =
hg., Eq.(3.17),it is not difficult to show that the only
element of SU(1, 1) ® SU(2) which sends g, into g, is the
identity element e and H, = {e}.

Finally consider the reducible representation
U(g)lx1:x2M] where g € SU(1,1) ® SU(2). This repre-
sentation, by the subgroup theorem, is equivalent to
a reducible representation U11}(8) of SU(1,1) & SU(2),
where [1] denotes the fact that this representation is
induced by the representation of {e}. Ul1 acts in a
Hilbert space of functions F' € ¥ with the property
F(hp8) = F(eg) =F(8), g € SU(1,1) & SU(2). Thus
F is a function over all of SU(1,1) & SU(2) since
[SU(1,1) & SU(2)]/H, =~ SU(1,1) & SU(2). The norm
on I, is

lF,l2 = j@}du(gr)iF(g)lz (3.23)
where dy(g) is a measure in the parameter space of
SU(1,1) ® SU(2).

Therefore, ¥, is just the space of all square-inte-
grable functions over SU(1,1) ® SU(2). A unitary
representation which acts in the Hilbert space of all
square-integrable functions over a group is the
regular representation of that group. Therefore, UlY
is identified as the regular vepresentation of
SU(1,1) & SU(2).

The decomposition of the regular representation of
SU(2) into unitary irreducible representations is well
known. The regular representation of SU(1, 1) can be
decomposed via the SU(1, 1) Plancherel formula.22
Then the content of [A,/] in [x;, xo, M] is

Utxe e M@, a) = [€ ap)Z® @0 + 1)DIN @) & DU @),
(3.24)

where d € SU(1,1),% € SU(2). [® dp()) is a direct
integral over the unitary irreducible representations
of SU(1,1) a%pearin'g in the Plancherel measure

dp (\) and 25 is a direct sum of SU(2) representa-
tions. Note that Eq. (3. 24) implies that the multipli-
city of a representation [x,1] in any [x;, x»,M] is just
its multiplicity in the regular representation of
SU(1,1) & SU(2). In general, this multiplicity is in-
finite.

4. CONCLUSION

The content of the unitary irreducible representations
of SU(1,1) ® SU(2) in the representations of the prin-
cipal nondegenerate series of SU(2,2) given in Eq.
(3.24) is the main result of this work. As a secon-
dary result the transformation of the right cosets of
SU(2, 2) obtained in Sec. 2 should be of use for further
study of SU(2, 2) involving its induced representa-
tions. Since the entire regular representation of
SU(1,1) &« SU(2) is contained in each member of the
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principal nondegenerate series of SU(2,2) we con-
clude that the physical content of the specific assump-
tion that a scattering amplitude can be expanded in
the set of representation matrices belonging to the
principal nondegenerate series of SU(2, 2) represen-
tations is uninteresting. From the discussion of Ref.
22 we point out, however, that this may be attributed
in part to the manner in which we have decided to
build SU(1,1) ® SU(2) into SU(2). I the full SU(1,1) &
SU(2) is imbedded in SU(2, 2), it is conceivable that

R. McCLIMENT

more interesting results may be forthcoming. This
matter is presently under investigation.
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correspond to the exact ground state of an operator B(g) which generalizes the BCS Hamiltonian. Further,
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1. INTRODUCTION

The problem of describing the limitations on a pth-
order reduced density matrix, and its related Green's
functions, which derive from the fact that it is formed
by contraction from an N-fermion (or boson) system,
was called the N-representability problem by the pre-
sent author! in his paper SFDM-I. Giving it a name
merely sharpened and made precise a problem which
had been noticed by several previous authors.2 The

J. Math. Phys., Vol. 13, No. 2, February 1972

significance of the problem arises from the fact that
most of the information accessible to physicists about
the state of a system of identical particles is con-
tained in the 2-matrix. Thus a “practicable” solution
of the N-representability problem for the 2-matrix
would almost eliminate the N-particle wavefunction
from guantum mechanics.

It was shown in SFDM-I that necessary and sufficient
conditions for ensemble N-representability of the 1-
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1. INTRODUCTION

The problem of describing the limitations on a pth-
order reduced density matrix, and its related Green's
functions, which derive from the fact that it is formed
by contraction from an N-fermion (or boson) system,
was called the N-representability problem by the pre-
sent author! in his paper SFDM-I. Giving it a name
merely sharpened and made precise a problem which
had been noticed by several previous authors.2 The
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significance of the problem arises from the fact that
most of the information accessible to physicists about
the state of a system of identical particles is con-
tained in the 2-matrix. Thus a “practicable” solution
of the N-representability problem for the 2-matrix
would almost eliminate the N-particle wavefunction
from guantum mechanics.

It was shown in SFDM-I that necessary and sufficient
conditions for ensemble N-representability of the 1-
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matrix D! can be expressed in terms of the eigen-
values of D1—simply that the eigenvalues of ND1 are
at most unity. Alternatively, if I denotes the identity
operator in one-particle space,this condition requires
that the operator I — ND? be positive semidefinite.
Apparently, the N-representability of the 2-matrix D2
is much more complicated so that necessary and suf-
ficient conditions involve not only limitations on the
eigenvalues of D2 but also complex interrelations
among its eigenfunctions. The set of ensemble N-
representable 2-matrices, which we denote by ®%,

is convex. Its closure, in the topology derived from
the scalar product (A[B) = tr(A*B), is compact, and
hence the set is determined by its extreme points.
The main result of the present paper is a theorem
asserting that, for an arbifrary antisymmetric 2-par-
ticle function g, D2(g¥) is extreme in ®%. Here N is
even and g¥ is the normalized antisymmetrized gemi-
nal power (AGP) function of N-particles derived from
£ and defined in SFDM-I. A particular case of this
result, namely when D1(g) has all its eigenvalues
equal, was proved in SFDM-I (Theorem 9. 4). How-
ever, lifting the limitation on g constitutes a very
great and rather surprising generalization of the pre-
vious result, and its proof requires quite different
ideas,

In the course of proving the above theorem we show
that a certain operator B(g) belongs to the dual of the
convex cone determined by ®%,and obtain the exact
solution for the ground state of B(g). Since B(g) in-
volves two-particle interaction of a more general
nature than does the solvable case of the pairing
Hamiltonian, we expect that B(g) will serve as a
source of model Hamiltonians pertinent to the study
of a wide variety of correlation phenomena in many-
particle systems. Both Hartree-Fock and BCS sys-
tems arise as particular cases, depending on the
choice of g.

The paper concludes with the proof of three neces-
sary conditions for N-representability which were
announced3 some years ago but which have not hither-
to been published. The first asserts that the rank of
an N-representable p-matrix cannot be less than the
corresponding value for a Hartree—Fock system,
namely the binomial coefficient (¥). The other two in-
volve the concept strong orthogonality defined in the
next section. They illustrate rather dramatically that
N-representability of a 2-matrix forces complex in-
terrelations among its eigenfunctions—i.e., among its
natural geminals or nags. If {gi},i =1,2,...,k,are
nags of an N-particle fermion system in state ¥ and
if the g, are mutually strongly orthogonal, then the
sum of the corresponding eigenvalues of D2(¥) is at
most (N — 1)~1. That this result remains true for all
values of % seemed quite surprising to the author
when it was first discovered. Finally,if a nag and its
conag are strongly orthogonal, the corresponding
eigenvalue is not greater than the Hartree Fock value,
namely (§)-1.

A survey of the state of the N~representability pro-
blem as of the summer of 1967 was given by the
author in a report,4 which is still in print,

2. NOTATION AND TERMINOLOGY

Recall that if ¥ is an antisymmetric wavefunction the
p-operator Dp(¥) sends 2p particles (1 2.,.. p;

215
1/2’,.. p’) into the p-matrix
br(12,..p;172" ... p")
= [ ¥@2:---N)F ...p'p+1:--N)
ptlece N
= aral(l... plab(l’ ... p"), 2.1)

where o ? are eigenfunctions and \# are the corres~
ponding eigenvalues. Note that in this context super-
scripts are not construed as powers or indices but
simply indicate the number of particles occurring in
the corresponding functions, The cases p = 1 and

p = 2 are so important as to deserve special termi-
nology: oz} is a natural ovbital or norb; azz is a natu-
ral geminal or nag. We use the terms orbifal and
geminal to denote arbitrary functions of one and two
particles, respectively. Physicists and chemists
should be warned that what is here, for the sake of
brevity, called an orbital they would normally refer
to as a spin-ovbital.

The linear space, over the complex numbers, spanned
by {a P} will be called the p-range of ¥ and denoted by
R?(¥). Thus R1(¥) is the familiar space spanned by
a one-particle basis set, If ¥ and ¢ are two antisym-
metric (or symmetric) functions, not necessarily of
the same number of particles, we say that ¥ and ¢
are strongly ovthogonal if R1(¥) is orthogonal to
R1(¢p),in other words, if all the norbs of ¥ are ortho-
gonal to all the norbs of ¢ or, again, if the ranges of
D1(¥) and D1(p) are orthogonal.

Let A, denote the antisymmetrizer on N particles,
so that if f is an arbitrary function of N particles,
Ay f is antisymmetric in N variables. Of course,
A/ may be the zero function, If ¥# and ¥4, where
p + g = N,are antisymmetric functions of p and ¢
variables respectively, then

VP AT (12, N)—> AyWp(L... p)¥a(p+1...N).
(2.2)

The function ¥# A ¥¢,the “wedge” or “Grassmann”
product of ¥ and ¥4, is an antisymmetric function of
N variables. The set of antisymmetric functions
equipped with the Grassmann product and ordinary
addition of functions forms an algebra or ring. If ¥ =
f A g, we shall say that f/ and g are Grassmann fac-
tors of ¥. When the context precludes ambiguity, we
may refer to f and g simply as factors of ¥ and say
that f divides ¥. If f is an orbital, there is a remark-
able theorem, probably due to Grassmann, that f
divides ¥ if and only if f A ¥ = 0, However,if f isa
function of two or more variables, there seems to be
no simple criterion for characterizing whether or not
f is a factor of V.

If C is a convex subcone of a real linear space V,
then the polar cone € is defined as the set of real
valued linear functionals f which are nonnegative on
C. That is,C ={f|x € C = f(x) = 0}, When V is
provided with a nonsingular scalar product,the func-
tional f can be identified with a vector y, say, such
that 7(x) = (v |x) for all x. In this case we define € =
{¥ylx€ C = (ylx) = 0}. The set®2 consisting of the con-
vex closure of 2-operators which are representable
by means of normalized N-particle functions,definesa
cone obtained by multiplication of the elements of ®%
by the nonnegative reals. For the circumambient

J. Math. Phys., Vol. 13, No, 2, February 1972



216 A, J.

vector space V, following Kummer,5 we take the real
space S2 of bounded symmetric two-particle opera-
tors. As the scalar product of A, B € §2, we take
tr(AB). Then by #2 we denote the set

{B|B € 82,D2 ¢ <p§=> tr(BD2) = 0}, For D2 € @%
we say that B exposes D2 if B € $2 and tr(BD2) = 0,
and the only other elements of ®% which satisfy this
equation are scalar multiples of D2,

We adopt the common usage of denoting the boundary
of a set @ by 9®. The n-fold tensor product of a
linear space H is denoted by Hz;the antisymmetric
subspace of H» by H»~, If A? and B4 are operators on
H?~ and H%~ respectively,then,for p + ¢ = N, A¢ A
B4 is the operator on H¥~ defined by Ay, A? ® B9A,,
where ® denotes the usual tensor product of opera-
tors.

3. THE OPERATORS F(g) AND B(g)

A closed convex cone C is the polar of its own polar
C. Thus, if we knew $%, then, in principle, ®2 could
be characterized as the set {D2|tr(D2B) = 0,B ¢ $2].
Indeed, since for an element D2 on the boundary 30%
of ®% there is one or more B € $% such that

tr(BD2) = 0, it is sufficient to know those B € §2
which are exposed by some D2 € 30%. Note that if
D2 € ®%, B € $%, and tr(D2B) = 0, then we can con-
clude that D2 € 30% and B € 362,

Thus in order to characterize (P%, by means of a set
of linear inequalities it is sufficient to use those
determined by B € a@ig,. Even these are more than
are generally needed since a set of extreme points of
&2, is enough. For example, ®} is completely charac-
terized as consisting of those D! which have unit
trace,trD! = 1 and satisfy the two conditions

Dl=0, [I—NDl=0. 3.1)
The first of these asserts that D! is a positive semi-
definite operator and the second that the eigenvalues
of D1 are not greater than N-1, Conditions (3.1) fol-
low from the fact that if P, is the projector onto an
arbitrary orbital,
(3.2)

P, and I—NP,

[
are extreme in $%. Since the operators (3. 2) exhaust
the extreme points of @}, (3.1) are sufficient to
characterize ®1,

The conditions (3. 1) are equivalent to results obtained
in SFDM-I and constitute a neat and satisfying solu-
tion of the ensemble N-representability problem for
the 1-matrix. However, to the author's knowledge, a
satisfactory solution of the pure N-representability
problem even for the l-matrix has still not been
obtained. Since any two 1-matrices are unitarily
equivalent if they have the same set (with multiplicity)
of eigenvalues, and since N-representability is in-
variant under unitary transformations of the orbital
basis, we know that the solution can be formulated as
a condition on the eigenvalues of D1, Unfortunately,
for p > 1 the N-representability of D# involves not
only conditions on the eigenvalues but also on the
interrelations of eigenfunctions. Evidently, this is the
reason that for p > 1 the N-representability problem
is some orders of magnitude more difficult than for

p =1L
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Since an N-representable D2 is a positive semidefinite
operator on H2~ it is clear that the projector P, onto
the geminal g belongs to @%, for arbitrary g. It fol-
lows from the spectral theorem that P, is extreme in-
®%. In the next theorem we prove that two more
classes of operators F(g) and B(g) each depending on
an arbitrary geminal belong to (3'512\,. Two geminals g,
and g, are equivalent under unitary transformations
of the orbital basis if and only if D1(g,) and D1(g,)
have the same eigenvalues with the same multipli-
cities. Recall that for a geminal these multiplicities
are even. Thus, the specification of a monotonely non-
increasing sequence of positive reals,A; = X,, Ay =
Agseesdggq =Ny, X; = 1, determines a unitary
equivalence class of operators F(g) and B(g). For
each » = 2s we shall obtain a family, of dimension

s — 1, of unitary equivalence classes of elements of
®%. Each class has dimension 2 — » — 1 if R1(g) is
finite, and infinite otherwise.

For g an arbitrary normalized geminal, define

F(g) =12 —2NDY(g) A ' + 3N(N —1)P,, (3.3)

B(g)=P—WN—-2DYg) A ' — (N — 1)P,, (3.4)

where I? is the identity on H?+ and P, = D2(g) is the
projector onto the geminal g, Thus F(g) and B(g) are
Hermitian operators on H2+ and therefore belong to
the real space S2 of all two-particle Hermitian opera-
tors which we take as the circumambient space for
®% and £%.

Theovem 3.1: The operators F(g) and B(g) be-
long to 32, the polar of the set ®2 of N-represen-
table 2-operators.

Proof: (a) We first prove that F(g) € $2. Denote
the antisymmetrizer on N + 2 particles 1,2,...,N +
2byA, ,andlet x(12--- N+ 2)=A, ,g(1 2)¥
(34---N + 2) where ¥ is an arbitrary N-particle
wavefunction. Then by Theorem 6. 2 of SFDM-I, which
follows from Sasaki's formula for p = 2,

(N s 2) (xIx) = (N : 2) (Ay.28¥|Ay,58%)
' = 1— 2N tr[D1(g)D1(¥)]

+ (¥) o202 )

= tr [(1 — 2ND1(g) + <]2V)Pg>D2(\I/)]

= tr[F(g)D2(¥)]. (3.5)
Since (x|x) = 0, this implies that F(g) ¢ $%. Note
that (3. 5) vanishes if and only if x = 0.

(b) To show that B(g) ¢ &%, recall that if P is an
orthogonal projector on a Hilbert space and x is any
vector, then || Py |l = || x || with equality if and only if
Py = x. We apply this choosing P = A, ,, and y =
Ay,18% where A, ; acts on the particles numbered
2 to N + 2. By applying Theorem 6. 2 of SFDM-I
twice, with p equal to 1 and 2, we find that

2[1— 2Na + (2’)1;}5 W~V + 2)[1 — Na], (3.6)

where
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a =tr[DY(g)D1(¥)], b =tr[P,D2(¥)]. 3.7
Note that a = 0,5 = 0. It follows from (3. 6) that
1—-(N—2)a—-N—-1b=0
that is
tr[B(g)DZ(¥)]= 0 (3. 8)

for arbitrary antisymmetric N-particle functions ¥.
Thus B(g) € 0%.

Notice that equality obtains in (3. 8) if and only if

AN+2g‘I’ =AN+1g‘I/‘ (3.9)
In the course of the preceding proof of Theorem 3.1,
our curiosity is aroused to discover what pairs g, ¥
imply that

tr[F(g)D2(¥)]=0 or tr[B(g)D2(¥)]=0.
Either of these equations can obtain on(lgi for associa-
ted pairs of elements of the surfaces 3% and 30%,
respectivly. The answer to this question for B(g)
when the rank 7,(g) of g is not less than N is provided
by the main theorem of this paper. The case 7{(g) <
N is not fully understood. The question for F(g) can
be reformulated in terms of the hole or @ matrix6
taking the form, when does the @ matrix have g as an
eigenfunction with zero eigenvalue?

Before we leave Theorem 3.1 let us comment on the
proof of part (b). Our method of proof was rather
simple minded. Indeed, the key inequality (3. 8) al-
ready occurred in conclusion (iv) of Theorem 3 of
the author's 1962 Uppsala preprint.7 At that epoch the
author was not thinking about convex sets—the rele-
vance of which first became apparent later in one of
those celebrated midnight discussions at Sanibel pre-
sided over by Per Olov L¥wdin—so that he did not
draw the important conclusions formulated in Theorem
(3.1). There is another, more sophisticated, method
of proving part (b) of the theorem. We describe it
here since it may possibly lead to greater insight.

For g(1 2) and ¥(3 ... N + 2) antisymmetric, the func-
tion y = g¥, when acted upon by the symmetric group
Sy+2 Permuting variables, generates a linear function
space V of dimension & say, which is a representation
space for 8,,,. As such V is the direct sum of car-
rier spaces of irreducible representations of §, .
One easily concludes, by the theory of induced repre-
sentations or otherwise, that the only possible irredu-
cibles occurring in V are denoted in the common nota-
tion by [1¥+2], [2,1¥] and [22 1¥-2], The carrier
spaces V;, 1= i = 3, of these irreducibles are of
dimension 1,N + 1,and 3(N + 2)(N — 1), respectively.
The sum of these three dimensions is (¥52) which is
the number of linearly independent functions which
can be generated by 8,5 acting on y = g¥ when g and
¥ are the most general antisymmetric 2 and N par-
ticle functions. Thus

X=%1 t xg* xs wherey; €V,.

Part (a) of Theorem 3.1 was proved simply by noting
that || x,1/2 = 0, where x; is the completely antisym-

metrized part A, ,,x of x. Similarly, it is possible to
prove part (b) of Theorem 3.1 by expressing the fact
that [ x, /12 = 0, since it can be shown that

N +2)xgl2=21—(N—2a—@®—1»], (3.10)

where a and & are defined in (3. 7). It can also be
shown that

W+ Dl xgll2=®—1[1+ 2a+ b (3.11)
Since a = 0 and b = 0 it follows from (3. 11) that x5 =
0 so that x always has a nonzero component in V.
Thus there are four possibilities for the dimension &
of V according as x; and x, do or do not vanish. All
four possibilities can in fact occur as is shown by the
examples exhibited in Table I, where [123] for example

TABLE I,

&g hd X1 X2 6

[12] [345] =0 =0 IN+2)N+ 1)
[12] [123] 0 0 IN+2)N—1)
[12] [134] 0 = 0 IN(N + 3)

g gv =0 0 INN + 1)

denotes a Slater determinant involving three ortho-
normal orbitals ¢y, ¢,, ¢3, g denotes a geminal of
rank greater than N + 1,and gV is the AGP function
generated by g. In the first three lines of Table I the
examples correspond to N = 3 but are susceptible of
trivial generalization corresponding to the dimensions
reported for 3.

If g and ¥ are such that boti (3.5) and (3. 8) vanish
then by solving two linear equations, we infer that

a=N-1, b=2/NN-—1). (3.12)
Since ¢ can be interpreted as a weighted mean of
eigenvalues of D1(¥), with weights determined by g,
and since A}(¥) = N-1,the first equality in (3. 12)
occurs if and only if the 1-range R1(g) of g is con-
tained in the subspace of R1(¥) corresponding to the
eigenvalue N-1, Hence, by Corollary 4. 3A of SFDM-I,
all of the norbs of g are Grassmann factors of V.
Thus the rank »(g) of g is < N, Suppose r(g) = 2s
since the rank of a geminal is necessarily even. Then
the AGP function g2s, being a function of 2s variables
and also of rank 2s,is simply a Slater determinant
on the 1-range of g. Since any orbital in R1(g)is a
Grassmann factor of ¥, so is g2s, Hence a = N1
implies that

U =g2s A o, (3.13)
where ¢ is an antisymmetric function of N — 2s
variables. Without loss of generality we assume that
¢ is strongly orthogonal to g. Since g2s is a Slater
determinant, D2(g2s) is simply the identity operator
on R2(g2s) multiplied by (§)-1. With the help of a
result due to McWeeny it also follows easily that b =
(¥)-1. The result of McWeeny which we need is the
italicized statement on page 361 of his 1960 review
article.8 Since it is very useful and apparently not
well known, we repeat it here. Suppose ¢;, 1= i< m,
are m mutually strongly orthogonal antisymmetric
functions with Grassmann product denoted by A ¢;;
then
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P2(A @31 2,1°2) =75 pyle;;12,1727)
i
* 20105 1,10p1(052,2)
itj

—P1(0;52,1)p1(p;; 1, 2)]. (8.14)
Here p; and p, are the 1- and 2-operators norma-
lized to N and N(N — 1), respectively. As a check on
this formula take the trace of both sides. The trace
of the last expression in (3. 14) is zero. Suppose ¢, is
a function of N, particles; then we have, for the lhs,
N(N — 1) and, for the rhs,

N, N, - 1)+ ;NN
iFj
=2N2+2 Z)NN —N

i<j

=N2_N
which is correct.

Using McWeeny's formula (3. 14), we easily derive a
converse to the above result. If ¥ = g2s A ¢, where
7(g) = 2s = N and ¢ is strongly orthogonal to g, then
a=N-!and b = (%)-1. We thus have the interesting

Theovem 3.2: If g is a geminal of rank 2s < N
and ¥ is an N-fermion wavefunction, then
tr[F(g)D2(¥)] = tr[B(g)D2(¥)] = 0 if and only if ¥ =
g2s A @, where ¢ and g are strongly orthogonal,

4. SOME EXTREME POINTS OF ®%

Since a compact convex set is determined by its ex-
treme points, one method of characterizing ®%—in
other words of solving the N-representability pro-
blem for 2-matrices—would be to enumerate all ex~
treme points of ®%. It is easy to show that the pre-~
image, under (N — 2)-contraction, of an extreme point
contains a pure state. Erdahl has recently proved
that the extreme points of ®% are exposed and has
conjectured that their preimages are unique, that is,
consist of one pure state. However, in general, the
2-matrix of a pure state is not extreme. It may lie
in the boundary but will usually be interior to ®%.

For (P1 we have a fairly complete story. A Slater
determmant covers an extreme point of ®%. A pure
state ¥ with one or more eigenvalues of Dq(\If ) equal
to N-1 covers a boundary point of ®},. All other ¥
cover interior points.

Theorem 9. 4 of SFDM-I asserts that D2(g¥) is ex-
treme in ®% if g is a geminal of extreme type, that is,
if all the e1genvalues of D1(g) are equal. Witten ex-
tended this result in an unpublished work by showing
that if g is of extreme type and S is a Slater deter-
minant in s variables strongly orthogonal to g, then
D2(S A gN-s) is extreme in ®%,. Of course, N — s must
be even.

In the present section we obtain a major extension of
Witten's result by showing that the conclusion remains
valid if we allow the antisymmetric geminal g to be

arbitrary except that its rank be greater than N — 1.

Theovem 4.1: If N is even and g is an arbitrary
fermion geminal of rank = N, then an element D2 of
@2 satisfies tr[D2B(g)] = 0 if and only if D2 is cover-
ed by a pure state ¥ proportional to the AGP function
g¥. For all such g, D2(g¥) is extreme in 0%,
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Proof: (a) If D2 is not pure N-representable,
assume it is of the form

i

(4.1)

where w! > 0, 35 wi =1,and D2(¥;) is N-represen-
table by the pure state \I',. We assume that

tr[B(g)D2] =37 wi tr[B(g)D2(¥;)] = 0. (4.2)
But B(g) € §%;therefore,

tr[B(g)D%(¥,)] = 0
and (3. 2) is possible only if

tr[B(g)D%(¥,)] = 0 (4.3)

for all ¥,

(b) We are thus led to consider a pure state ¥ such
that

tr[B(g)D2(¥)] = 0, (4. 4)
and we shall show that requiring (4. 4) is sufficient to
force ¥ to be proportional to g¥. Therefore, each ¥,
is proportional to gV, and all the D2(¥,) in (4 1) are’
equal to D2(g¥) and is thus covered by gV, as was to
be proved.

{c) The proof of the theorem has therefore been re-
duced to showing that (4. 4) holds if and only if ¥ is
proportional to g¥, However, in the course of the
proof of Theorem 3.1 we noted that (4. 4) holds if and
only if (3.9) is true. But,by Theorem 7.7 of SFDM-I,
if ¥ = g¥ then (3. 9) holds and therefore so does (4. 4).
Thus the theorem has been proved in one direction,
and it follows by the argument in (b) that D2(g¥) is
extreme in 0%,

(d) To prove the converse for arbitrary even N is
rather more difficult. However, the essence of the
proof is completely evident in the particular case
N = 4, which we therefore set out in detail.

We assume (3. 9) in the equivalent form

Ag¥(1234)g(56) = A4 ¥(1234)g(56), (4. 5)

where A acts on the variables 1,2,3,4,5 and A5 on
all six variables. Define
x = 5A5¥(1234)g(56)

= ¥(1234)g(56) — ¥(5234)g(16) —

— ¥ (1254)g(36) — ¥(1235)g(46).

¥(1534)g(26)

If (4.5) is true, then y is antisymmetric in particles 4
and 6 so that

X+ (46)x =0, (4.6)
where by (46)x we denote the effect of permuting par-
ticles 4 and 6 in y. We identify particles 3 and 6 in

(4. 6), multiply the resulting equation by g(12), recall
that g and ¥ are antisymmetric, and obtain

¥(1234)g(12)g(53) — ¥(1253)g(12)g(34)

= ¥(5234)g(12)g(13) — ¥(5134)g(12)g(23).  (4.7)
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Symmetrize both sides of Eq. (4. 7) in the particles
1,2,and 3.

The circular permution (123) acting on the first term
on the rhs of (4. 7) turns it into
¥(5314)g(23)g(21) = ¥(5134)g(23)g(12),

which is the last term in (4. 7) except for sign. Hence
the symmetrized rhs of (4,7) is zero.

Since ¥(1234) is antisymmetric in 1, 2, 3, symmetriz-
ing the first term on the lhs of (4. 7) gives rise to
W(1234)A42(12)g(53) or ¥(1234)g4(1253), The same
argument applied to the second term on the lhs of
(4.7) leads us to the equation

¥(1234)g4(1253) =

¥(1253)g4(1234) (4. 8)

By assumption, 7(g) = 4 so that g4 = 0. Therefore,

¥(1234)/g4(1234) = ¥(1253)/g4(1253), (4.9)
Each side of (4.9) is symmetric in its variables, but
the rhs does not depend on particle 4, and therefore
neither does the lhs, which must therefore be a con-

stant, so that ¥ is proportional to g4.

For arbitrary even N, the preceding argument needs
only minor modifications. We define x by

x= N+ DA, ¥(1

where A, acts on particles 1,2,...,N+ 1, We
observe that (3, 9) implies x + (N, N + 2)x = 0;in
this equation we identify particles N—1and N + 2,
and multiply the resulting equation by g(12)g(34) <«
g — 3,N — 2). When we symmetrizeon i,2,...,

N — 1,the terms cancel in pairs {like the rhs of (4.7)]
except for two terms which give the equation
¥(1...Ng¥l ... N—1L,N+1)=v¥(1...N—1,
N+ Dg¥@A...N). If r(g) < N,then g¥ = 0, and this
equation would put no restriction on ¥. However,
under the hypothesis of our theorem »(g) = N, and so,
as before, we conclude that ¥ is proportional to gV,

- N)g(N + 1,N + 2),

In order to extend Theorem 4. 1, we need the following
result, of which, though it is fairly widely known,
there does not seem to be a simple published proof.

Theovem 4.2: 1f ¢ is a wavefunctionof N — 1
fermions such that D?(¢) is extreme in ®% _,, p<N,
and the orbital f is strongly orthogonal to ¢, then
D?(f A ¢) is extreme in @£,

Proof: Suppose,on the contrary, that

27 wiD#(¥), (4.10)

D¥(f A @)=
where w?> 0, ) wi =1,and ¥, are N-fermion wave-
functions. By Corollary 4 3A of SFDM- 1, DI{(f A o)
has f as a norb of eigenvalue N-1, which is the maxi-
mum possible. This will occur only if f is a norb
with eigenvalue N-1 of each of the ¥,. Hence, for
each i, ¥, = f A ¢, where ¢, is an N — 1 fermion
function strongly orthogonal to f.

From the definition of the p-matrix it is easily seen

that D#(f A ¢) is the sum of a term proportional to
D?(p) and a term, obtained by antisymmetrizing

DY(f)D?1(p), which is expandable in terms of p-
functions, all of which have f as a Grassmann factor
and are therefore orthogonal to R?(¢). Applying this
remark to both sides of (4. 10), we conclude that

=27 wiDp(¢i).

Since D?(¢) was assumed to be extreme in ®¢ . it
follows that, for all i, D#(¢,) = D#(¢p) and therefore
D#(p,) = D*"(g). But £, D?(p,),and D*1(¢,) com-
pletely determme D#(¥;), which is therefore equal to
Do(f A @) for all 4, Hence D?(f A @) is extreme in
®%,as was to be proved,

D?(p)

The set ®} of 1-representable 1-operators is identi-
cal to the set of positive 1-operators. By the spec-
tral theorem the extreme points of @} consist of all
projectors onto orbitals. By Theorem 4. 2 it follows
that if f; and f, are orthogonal orbitals, D1(f, A f3)
is extreme in ®}. Proceeding by induction, we have a
new proof of the following well-known fundamental
theorem.

Theovem 4.3: If f,, 1= i< N,are orthonormal
orbitals then the Slater determinant finf 2/ Aees A
fn covers an extreme point of ¢%.

It is also a direct consequence of Theorems 4.1 and
4, 2 that for N even and 7(g) = N,if f is an orbital
which is strongly orthogonal to g,then D2(f A gV} is
extreme in ®% ;. Proceeding by induction, we thus
obtain the following generalization of Theorem 4. 1.

Theovem 4.4: 1 S is a Slater determinant in o
particles which is strongly orthogonal to the geminal
g of rank greater than or equal to 2u,then D2(S A g2u)
is extreme in ®% for N = o + 2.

The wave-function occurring in Theorem 4. 4 can be
designated as a GAGP—a generalized geminal power.

5. THE p-RANK OF ¥

Since the eigenvalues of an N-representable D1 are
not greater than N-1 and its trace is unity, there
must be at least N natural orbitals. That is, the rank
7 of an N-representable 1-matrix satisfies the
inequality

r = N. (5. 1)
However, for p > 1 we have little precise knowledge
about the rank 7, of D#(¥). We proved in SFDM-I
that X2 < (N — p + 1)~1. In particular,if N> 3,
a2 < (N—l) -1 thus

7y = N, (5. 2)
Further, since ¥ can be expressed in terms of » orbi-
tals from which only (3) linearly independent gemi-
nals can be formed, it follows that

vy = 3¥(r — 1). (5. 3)
In general, we expect equality in (5. 3), but it is easy
to give examples of the inequality. For example, if
the ¢, are orthogonal for 1 = i =6, ¥ = [123] + [456]
has 3#(r — 1) = 15 but », = 6. Ruska19 has consi-
dered the case of infinite rank.
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Whereas (5. 3) gives an upper bound on ¥4, the follow-
ing theorem gives a lower bound which depends on N.

Theovem 5.1: The rank », of an N-representable
p-matrix is not less than the binomial coefficient (¥).

Proof: Since the rank of a sum of positive opera-
tors is greater than or equal to the rank of any sum-
mand, it suffices to prove the theorem for a pure N-
representable p-matrix.

Suppose D? = D?(¥); then, by (3. 15) of SFDM-I,

‘P:Z) ciall?ag, (5. 4)
1
where a? are the natural p-states of ¥ and eigen-
functions of D? and 7, is equal to the number of a£
for which ¢? # 0, Recall that N = p + g and that {a}
and {a g} are sets of orthonormal functions of p and ¢
particles, respectively. On the other hand, we know
from SFDM-I that ¥ can be expressed in terms of
the natural orbitals ¢;, so that there exists an anti-
symmetric tensor a; ; of complex numbers
such that e w

een

W12 N)=F a;, . ).

(5. 5)

If K is a set of g distinct natural numbers, then we
define a function 7 , of p particles as follows. Let
{ipersipugseeeriyt = Kwith iy, < i <eee <iy
then

iy @ WMo @) 0,

fK(lz"'P)= 2 a;
iy e ip
Let 6 be the dimension of the complex linear space
spanned by the f, of which there are (;), where 7 is
the 1-rank of ¥, We shall prove that § = (1’37 ) and that
b=7

i 0 (1), (p). (5.6)
2 N 1 »

1

b
If ¥ = 0,at least one of the coefficients in (5. 5) is dif-
ferent from zero. Suppose ay ... 5 # 0;1let L be a
subset of p elements of {1, 2,..., N} = I y. Denote
by &, the Slater determinant:

q)L(l Qe p) = l(p11(1)¢12(2) sen (P,p(ﬁ) ’s

where iy < ip <+ <i,and L ={ij, g, ..., 0,0 H K
and L are complementary sets in 7, then &, occurs
in the expansion (5, 6) with coefficient a; , ... , or
—ay9... N*

For L €I, and K C I,, &, cannot occur in the ex-
pansion (5.6)if Kn L # O,i‘or in this case the anti-
symmetry of the coefficients forces them to be zero.
The family of all &, constitute an orthonormal set
in terms of which all f, can be expanded. The sub-
family F of all f, for which K C I, contains (¥)
functions. For fixed K C Iy,and with L = I, — K, &,
occurs in the expansion of f,but it does nof occur
in the expansion of any other function in F. It follows
that F is a linearly independent set. Thus & = ().

We now show that », = 6. Multiplying (5. 4) and (5. 5)
by @%* and integrating, we find that o is a linear
combination of f;. Thus 7, = 6. Again, multiplying
(5.4) and (5.5) by ¢% (p + 1 ... N) and integrating,
we find f; is a linear combination of the a4, Thus
7, = 6. It follows that 7, = 6 = (j,}’). QED
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6. TWO IMPLICATIONS OF STRONG
ORTHOGONALITY

Recall that two antisymmetric (or symmetric) func-
tions are said to be strongly orthogonal when their
respective l-ranges are orthogonal. To postulate
strong orthogonality frequently makes a good approxi-
mation in chemical systems, For example,two
hydroxyl radicals at opposite ends of a huge molecule
are almost exactly strongly orthogonal. To approxi-
mate a wavefunction by means of an AGP function is
certainly as good or better than Hartree—Fock. How-
ever, Kutzelnigg1® has provided numerical evidence
for his contention that the wavefunction of a four-
electron atom can generally be better approximated
by an antisymmetrized product of strongly orthogonal
geminals (APSG) than by an AGP function.

The following two results concerning strongly ortho-
gonal nags were announced at Sanibel in 1965 but

have not been published hitherto. Suppose that p = 2
in (5. 4); then, since we refer to a? as a natural gemi-
nal, or nag, we may conveniently, analogously to factor
and cofactor, refer to a¥-2 as the conag of o2.

Theorem 6.1: If g, a natural geminal of the N-
fermion function ¥, is strongly orthogonal to its conag
G,, then A2 the corresponding eigenvalue of D2(¥)
satisfies the inequality

A2 < 2/N(N—1). 6.1)
Equality obtains in (6. 1) if and only if ¥ is propor-
tional to g; A G;.

Pyoof: The proof follows familiar lines using
Sasaki's formula in (6. 3) of SFDM-I, Since ¥ =
> C;£;G; and A? = |C;|? we have

22 = [(g,G;| 12
’(ANg,-Gl-l 'I'>|Z

KAyg:G;| AygiGP1,

(6.2)

A

>
00
IA

2< g,G;14,8,Gpl 6.3)

= [2/N(N — D][1 — 2N(g,G, | (13)g,G,)

+ (2’)( £,G,1(13)(20)g,6)).

The inequality (6. 2) results immediately from the
Schwarz inequality since, as always, we assume that
¥ is normalized. The fact that A , is idempotent and
Hermitian implies (6. 3) and (6. 4) follows from
Sasaki's formula. Recall that,in (6. 4), (13) and (24)
indicated permutations of the particles and, since g;
and G, are assumed to be strongly orthogonal, the
last two terms in the square brackets in (6. 4) vanish.
Thus

A2 = 2/N(N — 1).

(6.4)

Equality obtains in (6. 2) if and only if ¥ is propor-
tional to A yg,G,, that is, to g, A G,, as required.

We know that any eigenvalue of D2 is less than

(N — 1)~1, Intuition led some physicists to believe
that it is necessarily less than (§)~! as in the cir-
cumstances of Theorem 6. 1. There is some numeri-
cal evidence that in real systems with few electrons
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the value ()~ which occurs for the Hartree—Fock
model is seldom greatly exceeded. However the pos-
sibility that A2 can be of order N-1 rather than just
N-2 is what allows a system to go superconducting.
Thus the value of these bounds is of crucial physical
significance.

We know that (N — 1)-1 is the best possible upper
bound for the eigenvalues of an N-representable D2
if N is even. The following theorem asserts the
surprising fact that the sum of any number of such
eigenvalues has the same upper bound if the eigen-
values correspond to a set of mutually strongly
orthogonal nags.

Theorem 6.2: If k is any natural number, if {g,},
1< i< k,is a set of £ mutually strongly orthogonal
natural geminals of an N fermion function ¥, and if
A2 is the eigenvalue of D2(¥) corresponding to g,
then

k
Z}l AZ2= (N —1)71,
i=

Proof: % =3 C,g,G,,let x = 21 C,8G,. Since
the g, occurring in y are mutually strongly orthogonal
and [C;I2 =2,

{x1(13)x> =Zj} A2 tr[D1(g,)D1(G;)] = 0.
Let x = 2% AZ; then
22 =[x 0 [2
= I<ANX|‘I"2
= |<ANX|ANX>"

(6. 5)

(6.6)

But
<ANX|ANX> = <ANX'ANAN—1X>

= <X|AN-1X>' 6.7)

Thus
A2 = (xlAyax)
< [1/(V — D]Kxl ) — x] (13)50]
= [1/(N — 1))

Since 1 > 0, it follows that A = (N — 1)~1, as we
wished to prove.

(6.8)

In the preceding argument we again used the Schwarz
inequality. The step (6. 7) follows from the fact that
Ay is a projector and projection does not increase
the length of a vector. Equality holds in (6, 7) if and
only if Ayx = Ay_;x. By (6.6),if equality obtains in
(6. 8), it occurs in (6. 5) only if g, and G, are strongly
orthogonal for all {, 1 = { < k. But then, by Theorem
6.1, 22 = (¥)-1 so that equality can obtain in (6. 5)
only if 2k = N, !

Equality does obtain in (6. 5) with 2% = N if and only
if ¥ is proportional to g; A g5 A -+ A g,, where the
£,; are mutually strongly orthogonal. This follows
from Theorem 6, 1 from which we can conclude that
in the assumed circumstances each of the 2 geminals
&; is a Grassmann factor of ¥. For such ¥, each of
the g, is a nag of ¥. (Contrast this with the fact that
g is a nag of g¥ only if g is of extreme type.) The
conag of g; is g, A g3 A ++- A g, and so on, Further
A =23 =--- =% = (§)-L. A single Slater determi-
nant provides the simplest instance of this general

result if we choose as the g, the Slater geminals [12],
[34],...,[N—1N].

7. DISCUSSION

The main result above, Theorem 4. 1, assures us of
the existence of a new class of extreme points of ®%.
Though this class is of high dimension, it does not
exhaust the set of extreme points. The small subset
determined by those g which have rank N is exactly
the set of D2 covered by single Slater determinants,
The convex closure of this set is the so-called Slater
hull. The essential limitation of the Hartree-=Fock
approximation, which has dominated the applications
of quantum mechanics to physics and chemistry for
the past forty years, is that it assumes D2 lies in

the Slater hull.

The proponents of the Green's function technic be-
lieve that they can go beyond the HF approximation.
As was pointed out by Pruski and the present
author,l1 they are able to hold this belief only by
gratuitously—and usually unconsciously—assuming
that the N-representability problem can be neglected
when the hierarchy of equations determining the GF's
is truncated, Thus the GF technic as currently prac-
ticed rests on faith rather than knowledge! The
single exception to this stricture known to the author
is the Gorkov ansatzll in superconductivity theory.
But this ansaiz is equivalent to the basic assumption
of the BCS theory that the wavefunction of a super-
conductor is an AGP,

The wavefunction appearing in Theorem 4. 4 is an
AGP supplemented by a Slater determinant and can
be briefly described as a GAGP—a generalized anti-
symmetrized geminal power., In view of the success
of the AGP function in superconductivity and nuclear
theory, it now appears that it may be well worthwhile
to devote as much energy as has been expended on
the independent particle model, systematically ex-
ploring the possibilities of the GAGP approximation,
moving beyond the Slater hull into the convex closure
of the extreme points of Theorem 4. 4.

In the course of proving Theorem 4.1, it appeared
that the exact ground state of the two-particle opera-
tor B(g) is g™,

Perhaps the essential point of this theorem is the
assertion that the ground state of the N-particle
Hamiltonian formed from B(g) is nondegenerate.
When g is of extreme type, D1(g) is the identity
operator on R1(g). By a special choice of norbs,
B(g) then reduces to the Hamiltonian of the simple
BCS theory. This occurs if, in the familiar physics
notation, we choose (£, 1) and (— k&, ), for a small in-
terval near the Fermi momentum, as norbs. Apart
from an additive constant, and a multiplicative con-
stant which measures the strength of the interaction
between two electrons, B{g) then reduces to P, which
is the BCS Hamiltonian. This suggests that B{g)
might advantageously be studied as a model Hamil-
tonian for other than superconducting systems. In-
deed, it should be possible to solve Eg. (3. 3) of12
SFDM-II, which give the 1-particle occupation num-
bers n, = NAL, for the eigenvalues A, of D1(g). If so,
then any 1-matrix for which the occupation numbers
less than unity are evenly degenerate can be covered
exactly by a GAGP function. Since for the HF approxi-

J. Math. Phys., Vol. 13, No. 2, February 1972



222 A, J.
mation #n is either 1 or 0, it follows that GAGP is
extraordinarily more versatile and that B(g) could be
used as a model Hamiltonian for a very wide variety

of fermion systems.

Regarded as an element of #2, B(g) determines a
hyperplane which touches ®% at one point and on one
side of which ®% must lie. The equation of the enve-
lope of all these hyperplanes can be obtained explicitly,
as the author plans to show in a future paper. This
envelope bounds a convex cone containing ®%. Simi-
larly, the family of operators F(g) and the family of
P, determine two other cones. Thus ®% is interior to
the convex set C bounded by these three cones. It is
an important unsolved problem to determine the dif-
ference set C — ®%.

The theorems of Sec. 6 illustrate vividly the thesis of
Sec. 1 that N-representability—certainly pure N-rep-
resentability—forces complex interconnections among

COLEMAN

the eigenvalues and eigenfunctions of D2(¥), Unfor-
tunately Theorem 5. 1 rather discourages our hope
that 2-matrix technics will open major simplifica-
tions for the numerical treatment of electron-elec-
tron correlation, implying as it does that the descrip-
tion of D2 necessarily requires at least (%) geminals.
In the current state of the numeric arts, the descrip-
tion of even one geminal is an act which cannot be
enterprized lightly or wantonly!
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A rigorous, equilibrium statistical mechanical treatment of a fluid in a weak external field is given. The tech-
nique involves a cell division which leads to upper and lower bounds for the free energy density. Under a suit-
able double limiting procedure these limits coalesce, yielding a free energy consisting of a field-free term plus
a field-dependent term. The cell division allows a direct physical definition of the local pressure p(s) and the
local density p(s). This treatment provides a rigorous derivation of the thermodynamics of a fluid in a weak
external field and, in particular, the hydrostatic equation gradp = — p gradé¢.

I. INTRODUCTION

The problem of a fluid in an external field is often
treated in thermodynamics.1 In such an approach, a
cell division of the system is made such that the ex-
ternal field is nearly constant over any given cell, but
may vary over the entire system. Each cell is taken
to be macroscopic in size, with well-defined thermo-
dynamic parameters. The thermodynamic approach
to this problem yields the hydrostatic equation! or,
equivalently, the variation of the local chemical poten-
tial with external field. The hydrostatic equation is
used in a variety of applications ranging from a deri-
vation of the barometer formulal for an ideal gas to
the variation of pressure with height for a fluid in a
gravitational field, as used in the experimental deter-
mination of critical exponents.2

Since the problem of a fluid in an external field is
fundamental, it is of interest to obtain a rigorous
statistical mechanical approach. This is the objective
of the present paper. The treatment here parallels
the thermodynamic approach in that a cell division is
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made and the external field is defined such that in the
limit, as the number of cells becomes infinite, the
external field is constant over any cell. This is
accomplished by a double limiting process.3 The first
limit is the thermodynamic limit of the entire system,
and entails simply increasing the number of cells.
This limit is followed by the thermodynamic limit of
each cell. The second limit insures that each cell is
of macroscopic size, with well-defined thermodynamic
parameters.

Our approach is to obtain upper and lower bounds on
the Helmholtz free energy density for the system in
an external field. The bounds consist of the Helm-
holtz free energy density for each cell in the absence
of an external field plus terms involving the inter-
action of each cell with the external field. Following
the above-mentioned double limiting procedure, the
upper and lower bounds coalesce determining the
Helmholtz free energy density for the entire system.
The pressure, density, and chemical potential of each
cell are taken to be the local parameters.
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nique involves a cell division which leads to upper and lower bounds for the free energy density. Under a suit-
able double limiting procedure these limits coalesce, yielding a free energy consisting of a field-free term plus
a field-dependent term. The cell division allows a direct physical definition of the local pressure p(s) and the
local density p(s). This treatment provides a rigorous derivation of the thermodynamics of a fluid in a weak
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I. INTRODUCTION

The problem of a fluid in an external field is often
treated in thermodynamics.1 In such an approach, a
cell division of the system is made such that the ex-
ternal field is nearly constant over any given cell, but
may vary over the entire system. Each cell is taken
to be macroscopic in size, with well-defined thermo-
dynamic parameters. The thermodynamic approach
to this problem yields the hydrostatic equation! or,
equivalently, the variation of the local chemical poten-
tial with external field. The hydrostatic equation is
used in a variety of applications ranging from a deri-
vation of the barometer formulal for an ideal gas to
the variation of pressure with height for a fluid in a
gravitational field, as used in the experimental deter-
mination of critical exponents.2

Since the problem of a fluid in an external field is
fundamental, it is of interest to obtain a rigorous
statistical mechanical approach. This is the objective
of the present paper. The treatment here parallels
the thermodynamic approach in that a cell division is
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made and the external field is defined such that in the
limit, as the number of cells becomes infinite, the
external field is constant over any cell. This is
accomplished by a double limiting process.3 The first
limit is the thermodynamic limit of the entire system,
and entails simply increasing the number of cells.
This limit is followed by the thermodynamic limit of
each cell. The second limit insures that each cell is
of macroscopic size, with well-defined thermodynamic
parameters.

Our approach is to obtain upper and lower bounds on
the Helmholtz free energy density for the system in
an external field. The bounds consist of the Helm-
holtz free energy density for each cell in the absence
of an external field plus terms involving the inter-
action of each cell with the external field. Following
the above-mentioned double limiting procedure, the
upper and lower bounds coalesce determining the
Helmholtz free energy density for the entire system.
The pressure, density, and chemical potential of each
cell are taken to be the local parameters.
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For simplicity, we consider a fluid contained in a
cubic volume V, of edge length L. We take the fluid
to be in the presence of an external field, w(r, V).
The precise form of the external field is described
below. We assume that the interaction between any
two particles satisfies the conditions4

ulr) =+ w0 for r <7y, (1a)

lu(r)] <Dr3-¢ for 7>, {1b)
The pair interaction then consists of a hard core of
radius 7, plus an interaction which falls off at least
as v 3-¢, D and € are finite positive constants. The
condition (1) is imposed so that the analysis can be
made rigorous. In particular, the hard core places an
upper bound on the number of particles that can
occupy a specified volume. Condition (1b) allows the
neglect, in the thermodynamic limit of the cells, of
interactions between particles restricted to disjoint
cells.

The configurational portion of the Hamiltonian for a
system of N particles is assumed to be the sum of the
pair interactions plus the interactions with the exter-
nal field,

H=U+W, (2)
where
U= %Eu(rij)y (3a)
i#j
N
W= Z}lw(ri, V). (3b)

The canonical partition function for the fluid in an
external field is defined by
A-3N

Q(ﬁ’ N’ Q) = I_V'T” j{;dr}_ M fg drNe~BUe—BW, (4)
where the temperature is given by (&)1, Q is the
domain of integration with which V is associated, and
A= h/(2rmkT)1/2 is the thermal wavelength. The
Helmholtz free energy density in the thermodynamic
limit is defined by

7(8,9) = — 71 Lim V-1InQ(8, N, ), (52)
where
p=N/V. (5b)

The thermodynamic limit, V - «, is taken such that
the density p is held fixed.

At this point it is convenient to introduce the domain
w, which we call the “intensive” domain associated
with 2. Each point 8 in w is obtained from a point r
in Q by the transformation

s = L-1r, (6)

Since £ is taken to be a cube of edge length L, this
prescription for the “intensive” domain implies that w
is a cube of unit edge length. The “intensive” domain
w is then clearly independent of the volume V.

To assure the existence of f(8, p}, we place the follow-
ing condition on w(r, V):

w(r, V) = ¢(Lr), M

where it is assumed that ¢(8), 8 contained in w, is

bounded and continuous. ¢{s) can be thought of as the
external field expressed as a function of the “inten-
sive” position s. In a very rough sense, | w(r, V)dr
is a measure of the external field interaction. Equa-
tion (7) and the assumed boundedness and continuity
of ¢(s) guarantee that

y-1 fnw(r, V)dr = fw(j)(s)ds (8)

exists and is independent of V. This condition can be
viewed as similar in nature to the condition® that the
integral over all space of a Kac potential exists and
is independent of the inverse range parameter.

The entire system is divided into M disjoint cells,
each cell being a cube of edge length / and volume v.
We then observe that

L = M1/3], (9a)
V = Mu. (Qb)

In terms of the “intensive” domain w, this cell division
appears as a division of the unit cube into M cells,
each cell of volume M~1.

The above-mentioned double limiting procedure then
corresponds to first taking the limit as M - oo, fol-
lowed by the second limit as » —» . Under the first
limit we note that the condition (7) implies that the
variation of the external field over any cell approaches
zero as M— . This is easily seen by viewing the
first limit in terms of the cell division of w. The
external field over any cell is given by ¢(8). As
M~ w, the volume of each cell in the “intensive”
domain approaches zero. The external field over any
cell then approaches a constant. Such behavior is
consistent with the thermodynamic approach to the
problem of a fluid in a weak external field.

The local thermodynamic parameters are most con-
veniently expressed as functions of the “intensive”
position s. The major resuits proved below are

F8,8) = [ [¢0 + 108, 0)]ds, (10a)
where

p=[ pds (10b)
and ¢

gradp = — p grade . {10c)

The term f0(8, p) is the Helmholtz free energy
density for the fluid in the absence of an external
field. p(s) and p(s) are the local pressure and density,
respectively, where

p= 28 ro,p) (1)

Equation (10a) expresses the Helmholtz free energy
as an average of a local function consisting of the
local Helmholtz free energy density in the absence of
an external field plus a term involving a product of
the external field and the local density. Equation (10b)
simply states that p is equal to the average of the
local density. Equation (10c) is the hydrostatic
equation expressed in terms of the local parameters.
Under restricted conditions it is also shown that

b= [ pds, (12)

where p represents the bulk pressure defined by
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Equation (12) leads to the interpretation that p is the
average of the local pressure.

II. PROOF OF THE MAJOR RESULTS

Let {n a} be a particular configuration of cell occupa-
tions such that

M
Z; na=N.
o1

LetQ ,a =1,...,M,be the domain of cell @. The
partition function can then be written® as

-3=
MOATTY €2) D\ ,-8W -8U
QB,N,Q)= 251 dary’ - [ drV)e e,
’ ("oc}< 1My ny ! fQY nY) (15)

where ry) is the position of the kth particle in cell y.
The summation is over all cell occupations such that
Eq. (14) is satisfied. We now establish upper and
lower bounds on the partition function. Under the
double limiting procedure these bounds coalesce,
giving an exact expression for f(8, p). This procedure
provides a rigorous proof of the familiar “maximum
term” method.

(14)

A. Upper Bound for (3, p, Q)

We first establish an upper bound for f(3, p, ) or,
equivalently, a lower bound for Q(8,N, ). Since each
term in the summation in Eq. (15) is nonnegative, a
lower bound for the partition function is obtained by
choosing any single term, i.e.,a set 2}, such that
Eq. (14) is satisfied:
A%y ¢2) ] ,-8w_-8U
T fg dr{"” ... fQ drnyjle e .
Y Y Y (16)
1m

M
Q8 N, Q) = [H
y=1

Define
wr(V) = 1t‘neatﬂ);w(r, V),

where the maximum is over all r contained in cell v.
Then, clearly
M
W=2in,w, (18)
a=1
for each occupation configuration {na}. The bound in
Eq.(16) can then be weakened as follows:
M -3n
QN ) = (A1
ya Tyt
(19)
We now write each integral over a cell as the sum of
an integral over the cell free volume? and an integral
over a corridor. The domain Q/ of the cell free
volume is defined such that Q] € &  and the boundary
of Q_ is everywhere a distance ¢/2 from the boundary
of Q,. For the case where Q, is a cube of edge
length I, 9/ is a concentric cube of edge length "=
! — t. Using this definition of free volume and the
fact that the integrand in Eq. (19) is nonnegative, we
obtain

M A anw » | -sv
Q(B,N, Q) Z[)E[l—z—l—'e Y 7_];) dl‘l T fQ,’y drny:le .

4

Y

(20)
Since the integrals in Eq. (20) are over the free
volumes of the cells, we are assured that
IrSJ)— r(jé)l =t fory =6. (21)

J.Math. Phys., Vol. 13,No. 2, February 1972

-Bn, w 62} M\ -8U
et anydr1 derny>e .

MILLARD
U can now be written as

M

U= U, +U. (22)
a=1

U, contains all intracell interactions for cell @, and

U’ is all intercell interactions. The inequality (20)

can then be weakened in the following way:

M A—Bn7 _
Q(B,N, Q) = exp(— BU;, )N <'72_|—e Brywy
y=1

y!
2] ) ,-8U.
X fmyair1 f%drnye 7)
M -Bn,w,~0
= expl— BU;,,) Hl[e "ryQ 8,n, , Qy’)]. (23)
-
U.,x represents an upper bound on U’ and @° is the
canonical partition function for a fluid in the absence
of an external field. Taking the logarithm of both
sides of the inequality (23) and dividing by 8V, we
obtain
_ M
78,5, 9) =ML Dby + 1O, 0 9] + V Uy,
(24a)

where f0(8, p, Q) is the Helmholtz free energy density
for a fluid in the absence of an external field and
where

p,=n,/v, p=N/V. (24b)
The condition (14) requires
M
M'lz;pazf-). (25)
a=1

Since f0(8, p,, Q) converges uniformly in the thermo-
dynamic limit,7 we are guaranteed that there exists
an €(v), independent of p_, such that

|fO(B7 P s Q:x) - fO(B’ Pa)l < E(U), (263.)
where
}lrge(v) =0. (26b)

Inequality (24a) can then be written as

M
F(B, 0, Q) =M [w,p, + FOB, p)] + €() + VU,
a=1 (27)

An upper bound on U’ for an interaction satisfying Eq.
(1) is given by8

U' < ANn, 173-¢ (28)
for t > 2%, where A is a finite positive constant and
Npax 1S the maximum occupation of a cell free volume.
Since we have assumed a hard core of radius v, it
follows? that

Npax <+ 27)3p,, 1 =27, (29)
where p, is the close-packing density. Combining
Egs. (283 and (29), we can take Uy, to be
= ANp (I’ + 27,)3t 3", (30)

!
Umax

B. Lower Bound for f (8, p, §2)

We now determine a lower bound for f(8,p, 2). To
accomplish this, we bound Q(3,N, Q) above by choosing
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the maximum term in the summation appearing in
Eq. (15). Since each term in this summation is posi-
tive and since there are at most

g, M) =[N + M— 1)1[/[N{(M— 1)!] (31)
terms in the sum, we find

Q(B,N, ) = g(N, M) max

Ry
M ,-3n
AT 162) -BW _-8U

X — d cee dr® . 32

Kﬂl n,! fsz7 Tay fn? r"r>e ¢ J (32)
The maximum is taken with respect to all cell occupa~

tions {n_}, satisfying Eq. (14). Define
wy(V) = I;rex%;;w(r, V) — ;pélnr;w(r’ V). (33)

Then, using Eqs.{3b), {17)and (33), we observe that, for
a given set {nf,

M M -
W =2 n, [ minw(r, V)] = 2nw,— n,. W, (34a)
a=1 reQy a=l
where
- M -
W = Z)wu. (34b)
a=1

The bound given by Eq. (32) can then be weakened as

Q(B,N, Q) =< gV, M) exp(ﬁnmaxﬁ/){m?x

(+4
M ,-3n
ATV -Bnw ) (N -8U
B Y . (35
x[(yrzll ™ e fgydr1 fgydrny) e ] (35)

U can be written as the sum of two terms as in Eq.
(22). Note, however, that no corridor has been con-
structed at this point. The inequality (35) can then be
written as

QB,N, Q) < g(N, M) eXP(ﬁ”maxﬁ’)eXP(— BUn;m) max

M o Ao
x ( e ™"@6,n, 0 ,)}) (36)
y=
U};n Tepresents a lower bound on the intercell inter-
actions U/’. In writing Eq. (36) we have anticipated the
fact [see Eq. (39)] that the U}, used in this calcula-
tion is independent of any particular occupation {na}.
Taking the logarithm of both sides of Eq. (36) and
dividing by 8V, we obtain

M
FByp, Q) =— max (— M‘IEI[wyp, + 708, 0y, 9,)})
Po Y=

— (BV)"t Ing(N, M) — V-lnmaxW + V—lvl;lini

(37)
subject to Eq. (25). In obtaining Eq. (37), the logarithm
and max were commuted. This is valid since the
logarithm is a monotonic function. Using the uniform
convergence properties of 70, i.e., Eq. (26), we find

M
£(8,5,9) = min [M-1%; [w,p, + fO(8, p,)]) — €()
{f"(x} ¥yl

— (V)1 Ing(N, M) — V-1n, W + V10U .. (38)
A fictitious corridor for each cell is now constructed
so as to coincide with the corridor constructed in
obtaining the upper bound for f(8, p, 2). For such a
construction and an interaction satisfying Eq. (1), an
expression for Uy, , can be written10 as
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ain =— ANp (I' + 27o)3t -3¢

— p M + ¢ + 2ryM-1/3)3 — (I — 27,)3].
(39)
$’ is a lower bound on the interaction of any particle
with all its neighbors and A is the same constant
appearing in Eq. (28). For interactions satisfying Eq.
(1), &’ is a finite constant.11

C. The Free Energy

We operate on both sides of Eqs. (27) and (38) with the
double limiting procedure lim , lim, . . The second
limit, v » o, can be constructed? such that

t/v1/3 50, o/13*¢>0 asv— . (40)
Using Eqgs. (30), (39), and (40), we observe that
lim lim Vg, =0, (41a)
vro0 M o0
lim lim Vg, = 0. (41b)
v=*o0 M+
Further, by Egs. (26b) and (31) we find
lim lim e(v) = 0, (42a)
vroo M 2w
lim lim V2 Ing(N, M) = 0. {42b)
V00 M"OO
Finally, using Eq. (29), we observe that
v, Wl =< M-1pW. (43)

But by Egs. (33) and (34), the limit as M = «© of M1
is just the difference of the upper and lower Riemann
integrals of ¢(s), which must vanish, Therefore,

lim V-1n,, W = 0.

M=o

We thus conclude that

- M
£(8,) = lim lim min (M-lz[w,p, +f°(s,p,)]), (45)
y=1

v~ Moo {pg)

(44)

subject to Eq. (25). In writing this expression we have
used the fact that Eq. (27) was valid for any choice of
{p satisfying Eq. (25).

Since f0(3, p) is a convex downward function,? we are
agsured that an extremum of the bracket term in Eq.
(45) is an absolute minimum. Extremizing the bracket
term in Eq. (45), using a Lagrange multiplier to satisfy
the constraint Eq. (25), we obtain the condition
a0 _
w, + =X, 46
i (46)
where A is the Lagrange multiplier. This set of equa-
tions determine {5} which minimize the bracket term
in Eq. (45). Equation (45) can be written as

M
F(8,5) = lim lim (M—lzl[w,;s, +f0(s,5,)]>, (a7)
=

v Moo
where {5},} are determined by Eqs. (25) and (46).

The second term on the left~hand side of Eq. (46) is
just the chemical potential for a fluid of density py in
the absence of an external field, i.e., we define

3f%(8,p,)
p"}" =_-f—_a-py_pz—' (48)
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Equation (46) is then simply
wy + Ky = A. (49)

If this equation is written for two adjacent cells, say
cells y and y + 1, we obtain the equality

“7'1 —_ p,y =— (wy+1 —_ wy). (50)

We observe that, as M — o, the right-hand side of Eq.
(47) becomes a Riemann integral, i.e., in terms of the
“intensive volume” the summation in Eq. (47) appears
as a Riemann sum over divisions of volume M1,
Equation (47) can then be written as (suppressing the
tilde notation)

7(8,8) = [ [¢p + o8, p)]ds, (51)

where p(s) is determined by Eqs. (25) and (46). Equa-
tion (25) also goes over to a Riemann integral,

p= prds. (52)

D. Hydrostatic Equation and Local Pressure

If both sides of Eq. (50) are divided by M-1/3, this
expression goes, in the limit M — «, to a differential
relation between y and ¢,

grady =— grad¢. (53)

In the limit as M — o, Eqs. (46) and (49) go over to
their appropriate continuum identities. Equations
(46), (51), and (52) then determine the Helmholtz free
energy density for a fluid in an external field exactly.

Equation (53) is equivalent to the hydrostatic
equation,

gradp =— p grado, (54)

where p is the local pressure associated with a fluid
in the absence of an external field with density p, i.e.,

970
P=p—afp——f°=pu—f°- (55)
Using the continuum form of Eq. (49) and integrating
Eq. (55) over the “intensive volume”, we obtain the

expression

[ pds =2 [ pds— [ (¢p + fO)ds. (56)

MILLARD
Via Eqs. (51) and (52), this equation can be written as

J pds = 25— 7(8,p)- (57)

From the form of this expression it is quite tempting
to associate prds with the pressure and A with the

chemical potential of the system in an external field.
The association of ), given by Eq. (49), with the
chemical potential is the basis for the usual thermo-
dynamic treatment of this problem.! The association
of fw pds with the pressure of the system with an

external field is reminiscent of the definition of local
pressure due to Stillinger and Buff.12

The above association can, in fact, be made precise as
follows. The pressure p and the chemical potential u
for a fluid in an external field can be defined by

p=5Ll— g, p), (582)
Q= —El’;(—gf—f’—),. (58b)

If ¢(8) and fO(B, p) are such that a partial derivative

with respect to g can be interchanged with the integral

over the domain w appearing in Egs. (51) and (52),

then Eqgs. (58) can be used to determine p and o
explicitly. Assuming the interchange of the derivative

?.nd) integral is valid,13 we obtain from Egs. (51) and
52

- 0 ]
P=5k=[zlep+roUs= [ o+ L]
)
= )\fwé%ds =X (59)
Equation (57) then implies that
p= prds. (60)

Under this assumption of interchanging the order of
differentiation and integration, we thus observe that
the association of § with fw pds and i with A is exact.
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Lower Bounds of the Energy Eigenvalues of Systems Containing Identical Particles

Robert H. T. Yeh
Deparimen! of Physics and Aslronomy, Stale Universily of New York, Buftalo, New York 14214
{Received 28 July 1971)
Lower bounds of the energy eigenvalues of systems containing identical particles were obtained by a generali-
zation of the method of Calogero and Marchioro [J. Math, Phys. 10, 562 (1969)].

It is desired to find a lower bound f_or the ith energy
eigenvalue Ey,i = 1,2,..., Ey = E] if i > j), of the
following Hamiltonian of N identical particles,

N N , N
Hy=XDT,+ 2V, + LW, (1)
i1 ij=1 i=1
where 7 excludes i = j terms, T,(W;) is the kinetic
energy (external potential energy) of the ith particle,
and V;; (= V;;) is one-half of the two-body potential
energy between particle i and particle j.

We shall derive a lower bound of Ej by the Rayleigh-

Ritz method.l Let us consider the following Hamil-
tonian of a comparison system,

n n n
Hn(h, 8 f) = .ZihiTi + .Z)l’gij.vij + ‘Z>1fiWi’ (2)
i= ij= i=

where n < N, and k, g, f 's are arbitrary numbers
satisfying the following constraints:

n n n
Z;hi=N; Z)lgij_—'N(N_l); Efi=N' (3)
i=1 i=1 i=1

Let us now choose the orthonormal set of eigenfunc-
tions of Hy, {¢}, ¥, ..., i}, as the trial functions

of H,(h,g,f). Although y ,'s are not eigenfunctions
of H,(h, g, f), because they are completely symmetric
or antisymmetric under the exchange of any two
coordinates i, j, we have from Eq. (3)

(#’&",Hn(h,g,f)l%) =E’ﬁ51m- (4)

‘Thus by using the Rayleigh-Ritz method, we have

Ej} = E}(h, g, f). ®)

This result is a direct generalization of Calogero and
Marchioro's result? for the ground state energy. In
particular, Theorem 1 of Ref. 2 can be generalized as
follows:

Ej = p B0 = D= FEALN - 1), (6)
or the ith eigenvalue of H), is not less than N/2 times
the ith energy eigenvalue of the system composed of
two such particles interacting with the same external
potential and among themselves through a two-body
interparticle potential, which is N — 1 times stronger
than the original interparticle potential. It is easy

to see that Eq. (5) can be generalized to systems
containing several different groups of identical part-
icles, provided that, in addition to Eq. (3) for each
group of identical particles, we also impose the
following constraints:

n m

29D G = NM, M

i=1j=1
for the interaction energy 25, 2577, ¢;v;;, of two
groups of identical particles in the comparison Hamil-
tonian. Those theorems of Ref. 2 which are based
upon the separation of H into several decoupled sub-
systems have no simple analogy in the case of higher
energy eigenvalues, as the nth (n = 1) energy eigen-
value of the total subsystem is in general not equal
to the sum of the nth energy eigenvalues of sub-
systems.

1 H. Gould, Variational Methods for Eigenvalue Problems (Oxford

S.
U.P., London, 1966), 2nd ed., Chap. 4.

2 F.Calogero and C. Marchioro, J. Math. Phys. 10, 562 (1969).

Upper and Lower Bounds of the Eigenvalues of a Second-Order Linear Self-Adjoint Differential
Equation
Robert H.T.Yeh

Department of Physics and Astronomy, Stale Universily of New York, Buffalo, New York 14214
(Received 30 July 1971)

Upper and lower bounds of the eigenvalues of a second-order linear self-adjoint differentia] equation were
obtained by a generalization of the methods of Nordtvedt {J. Math. Phys.8, 1406 (1967)].

It has been shown that! the eigenvalue problem of
various types of second-order linear, self-adjoint,
differential equation

Liul+rxpu=0, p>0, 1
for a domain G with the boundary condition # = 0.

(1) can be reformulated into maximum-minimum
problems of the quadratic functional— fc uL(u)dv

/ fG pu2dv).

(2) If eigenfunctions of Eq. (1) are ordered according

to increasing eigenvalues, then the nodes of the nth
eigenfunctions v, n = 1,2, ...,divide the domain G
into no more than n subdomains. (In particular,u,
has no node and u, has exactly one node in G).

(3) The nth eigenvalue for a domain G never exceeds
the nth eigenvalue for a subdomain of G.

To find an upper bound of the nth eigenvalue A_, let
us first consider a trial function u, which has (n — 1)
nodes in G. [l.e.,u, divides G into exactly n subdo-
mains G,. #, can always be constructed from sim-
ple polynomials. E.g., 7, (u — «,)(y — »,) if « has two
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independent variables. The optimum value of the
upper bound is obtained by adjusting the position of
the nodes x;,¥,'s.] Then we clearly have

Ag) = — f% uTL(uT)dz/<fGapuTzdv> =g, (2

where A(§) is the smallest eigenvalue of Eq. (1) with
domain G, and the boundary condition # = 0. If two
ne1ghbor1ng subdomains G,,G,; had different funda-
mental tones (\(g) = (@), then by using the property
(3) stated above, we could raise the fundamental
tone of one and 1ower that of the other by moving the
nodal point {x;,y,'s) which they have in common, so
that both subdomains would have the same funda-
mental tones. Thus,there exists eigenfunctions of
Eq. (1) with (¢ — 1) nodes and max{ ¢} = A(») where
AG) is the smallest eigenvalue of Eq. (1) which has
an eigenfunction with (x — 1) nodes. This together
with Eq. (2) implies that

X, =max{A@} =AW =, (3)

where the last inequality follows from the property
(2) stated in the first paragraph. Equation (3) is the
desired upper bound of A . It involves the computa-
tion of 2n integrals of Eq.(2), a¢=1,...,n,in com-
parison with the computation of 2n'2,n’ = n, matrix
element integrals and the diagonalization of a n’ X n’
matrix in the Rayleigh—Ritz procedure.2 Equation

ROBERT H. T. YEH

(3) is a direct generalization of Nordtvedt's result3
for the one-dimensional Sturm-Liouville equation.

In many cases,we can integrate the following expres-
sions:

(L1p)2 =2, f u;p(L71p)2u;dv ——E,X;'Z, )

where L‘1 is the inverse operator of L. Then,a lower
bound of A, can be obtained via the following inequal-
ity:

A2z [T, (L1p)2 —x, 2] = [T, (L71p)2 =, 2]"1,(5)
where Xm is an upper bound of A (any m,m # n),
obtained, say, by using Eq. (3) for A,

Equations (3) and (5) also hold for eigenvalue pro-
blems [Eq. (1)] with homogeneous boundary condition
of the form du/an + ou = 0, where 3/on denotes differ-
entiation in the direction of the outer normal. This
is because the nth eigenvalue A] of Eq. (1), with the
boundary condition 8u/on + ou = 0,is never larger
than the nth eigenvalue A, of the correspondmg pro-
blem with the boundary condition = 02. Thus x, of
Eq. (3) is also an upper bound of A/ . It is plausible
that these results still hold for more general bound-
ary conditions and for differential operators involv-
ing higher-order derivatives,as usually a corres-
ponding quadratic functional for this generalized
eigenvalue problem can be found.

1 R.Courant and D. Hilbert; Melhods of Malhemalical Physics
(Interscience, New York, 1937), 1st English ed.,Chap.6.

2 8.H.Gould, Varialional Methods for Eigenvalue Problems (Oxford

S
U.P.,London, 1966), 2nd ed., Chap. 4.
K

3 K.Nordtvedt,Jr.,J. Math. Phys. 8,1406 (1967).

Reduction of a Class of Nonlinear Integral Equations to a Cauchy System
Harriet Kagiwada and Robert Kalaba

Universily of Souheyn California, Los Angeles, California

and

Chung-Chun Yang
Naval Reseaveh Laboratory, Washinglon,D.C,
(Received 29 June 1971)

It is shown that a wide class of nonlinear integral equations can be transformed into a Cauchy system. Then it
is shown that a solution of the Cauchy system provides a solution of the original nonlinear integral equation.
Such reductions are important because modern computers can solve initial value problems with speed and
accuracy. There are intended applications in the theories of multiple scattering, optimal filtering, and lateral
inhibition of neural systems. This new approach makes no use of successive approximations or series ex-

pansions.

1. INTRODUCTION

In recent years much effort has been devoted to the
transformation of linear Fredholm integral equations?!
into Cauchy systems, i.e., differential equations with
known initial conditions.2”4 The importance of this
reduction resides in the fact that modern digital com-
puters can integrate large systems of ordinary dif-
ferential equations subject to known initial conditions
with speed and accuracy.5

In spite of the theoretical emphasis on linear func-
tional equations, nature resolutely provides us with
example after example of nonlinear behavior in which
cause and effect are not proportional.6;7 In particular,
nonlinear integral equations of Hammerstein type
have been studied much.8,? This paper is devoted to

J.Math. Phys., Vol. 13, No. 2, February 1972

the equivalence between the nonlinear integral equa-
tion in Eq. (1) below and a certain Cauchy system.

The Cauchy system is derived and validated in Sec. 2
and 3, and Sec. 4 provides some computational aspects.

Our method does not involve the usual successive

approximations or series expansions.

2. DERIVATION

Consider the class of nonlinear integral equations

u(t) = g(t,\) + 1 [oklt, 3,2\, u(y))Mdy,
O0=t=1 O=x=A. (1)

To call attention to the dependence of a solution u
upon A, as well as upon £, we shall write
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To call attention to the dependence of a solution u
upon A, as well as upon £, we shall write



REDUCTION TO A

u=u(t,d), 0=t=1 0=x=A. (2)

Equation (1) becomes

u(t,A) = g(t,)) + 1 [g klt, y, 1, u(y, 1)) dy,

O0=t¢t=1 0=x=A., (8
The parameter A may occur naturally, or it may be
artificially introduced. Assume that a solution « is

differentiable in A, and differentiate both sides of
Eq.(3) to obtain the relation

u,(t,A) = g(t, ) + fé k(t,y, X\, u(y, \))dy
+ Ajé k)\(t’ Yy Ay u(y) A)) dy
+>\jé ku(t’y,)‘?u(y’ A))u)\(y,)\)dy. (4)
Equation (4) is viewed as a linear Fredholm integral

equation in which the kernel is %2, and the first three
terms on the right-hand side are forcing terms.

Assume that the linear Fredholm integral equation

w(t, ) = F(,2) + A [k (8,3, X, uly, Ww(y, 1) dy,
0=t=1 (5

possesses a unique solution for 0 = A < A, where u is
a solution of Eq.(3) and F is arbitrary. In terms of
the resolvent kernel K, the solution of Eq.(5) is re-
presented as

1

O0< ¢ .
(6)

A

w(t,X) = F(t, 1) + X [ K(t, y, \F(y, \dy,

The resolvent kernel K itself satisfies the integral
equation

K(tv ¥, >\) = k;itr Vi A, u(y, A))
1S5 kLY N Uy, MK, ¥, Ny,

0=fy=1 O0=2xx=A, (7)

Returning to Eq. (4), we find that the solution #, may
be represented in the form

u\(t,0) = ¥(t, 1) + A [ K(t,y', e, Ny, (8)
where the function ¥is given by

W, 0) = g(t,\) + [kl y', 0wy, V)dy’
1 ’ ’ ’
+ )\fo k}\(t,y ’)\, u(y ) )\))dy ’
0=st=1 0=x=A. (9)
Equations (8) and (9) form a differential equation for
the unknown function u, the other unknown function

being the resolvent kernel K. From Eq.(3) we see
that the initial condition on the function « at A = 0 is

u(t,0) = g(t,0), 0=t=1 (10)

Next we obtain a differential equation for the resol-
vent kernel K. Through differentiation, Eq.(7) be~
comes

K)\(t’y’ A) = ku}\(ty y, A, u(yy }\)) + kuu(t’ ¥ )\’ u(y, )\))u)‘(y’ )\)
+ JoR (8,3, A uly, NEW, v, Ny’
1 , ’ ’
+ A S0 Rt 3", 2 uy’, VK, v, Ny
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1 ’ ’ ? ’

+ 7\[0 kmxt’ y ’ )‘) lt(j ’ )‘))u)\(y ’ A)K'(y )y1 A)dy

+ A [S kit Y A uy’, KDY, y, Ndy'. (11)
This is considered to be a linear Fredholm integral
equation for the function K. The kernelis asinEq. (5),
and the first five terms on the right-hand side are
taken to be inhomogeneous terms. For simplicity we
introduce the auxiliary function @ to be the sum of

these forcing terms, and, making use of Eq.(8), we see
that

QUL Y, N) = Ryt v, A, uly, \) + R LL,y, A, uly, 1))
x (B, + 2 JE K@,y V¥ (0 )dy’)
+ kgt v, uly’, KG9, Ndy!

+ Skt ¥, uly’, MEG, 3, Ny’
1 , ,
+ )‘.[Okth’y ,A,u(y ,)\))
' 1 12 ” ” "
x (‘I’(y ’)‘) + lfOI{(y ¥ ,A)\I’(y ,A)dy )
X K(y',y, Ny’ (12)

It follows that the solution of Eq. (11) may be written
in the form )

K(t,y,%) = Q4, 3, 1) + A S K(t, v, VR, ¥, \dy’,

O0=ty=1 0=ax=<A, (13)

The initial condition on the resolvent kernel K at
A=0is

K(t7 ¥, 0) = kw(t, Y, 0’ g(yy 0)),
which follows from Eq. (7).

0=ty=<1 (14)

Let us now summarize the Cauchy system for the
functions # and K. The initial conditions at » = 0 are
given in Egs.(10) and (14). The differential equations
are Egs. (8) and (13), the auxiliary functions ¥ and @
being defined in Eqs.(9) and (12},

Notice that solution of the Cauchy system provides the
desired parameter study in A, and no successive
approximations or series expansions are used. A
numerical technique is given in Sec. 4.

3. VALIDATION

We shall now show that a solution of the Cauchy sys-
tem in Egs.(10), (14), (8), (13), (9), and (12) provides a
solution of the nonlinear integral equation (3). We
begin by showing that K, as determined by the Cauchy
system, satisfies Eq. (7). Introduce the auxiliary func-
tion o by means of the definition
alt,y,2) = k9", uly’, 1)
2 SoRAL Y Xy, KG9, Ndy
O0=ty=<1 0O0=xr=A. (15)

Then by differentiation anduse of Eqs. (8) and (13) we
see that

aft,y, ) = Rylt, v, X, uly, A)) + Bt v, A, u(@, Ny, X)
+ [aRit ', A uly, KB, 3, \)dy’
+ S5 kalt, v, A, u(y, VK, 3, \)dy”
AL R,y Ay, O’ VK, v, Ny’
+ 1 fo kL3, uy’, KB, 3, \dy’, (16)
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oty ¥, M) = Rylt,y, A, u(y, M) + R, (¢, v, A, u(y, 1))
x (¥(y,2) + 1 [gK@®,5', )V, Ndy')
+ [Sh(t 9", N, uy’, KO, y, Ny’
+ 2 Jokult, ¥ 1, 1y, ADKG, 9, Dy’
+ S5kt "N, u(y’, 1))
x (TG, N) + 1 oK', y", ¥y, Ndy")
X K(y',y,\)dy’
+ A S5k, u(d’, 1)
X (QU’,%,0) + A [oKB',5",1)Q
"y, Ndy")dy".
It follows that
(63,0 = Q) + A [ (kult, v, \, uly’, N))
+ A fo k3", M uly” , KB,y Ny ")
X QW' ,y,Ndy’. (18)

Keeping the definition of ¢ in mind [Eq.(15)], we find
that the function a satisfies the differential equation

ot y,0) = Q(E,3,0) + A fgalt, v, QY , v, \dy’,
0=ty=1.

(17)

(19)
The initial condition at A = 0 is
a(t,y, 0) = ku(t’y, O’g(y9 0))y (20)

Comparing Eqs. (19) and (20) against Eqs. (13) and (14),
and, assuming uniqueness of solution, it is seen that

(21)

0=ty=<1,

Ct(t, ¥, h) = K(t’yy A)
or
K(t, Y, A) = ku(ty Vs A, u(y’)‘))

1 ’ ' ’ !
+ 2 fokdt 3, X, u’, VK, v, Ny’

0=<t,y=1, 0=x=A. (22)
Lastly, we introduce the function g to be
B(t, A) = g(t,X) + X gk, v, 1, u(y, M)y,
0=<1=1 O0=x=A. (23)
Differentiation with respect to » shows that
1
B)\(t) )‘) = g)\(t) A) + fo k(t; Y, )\) u(ya )\))dy
1
+ Afo kX(t’ y; }" u(yy A))dy
+ 7ok, y, nuly, M, Ny (24)

Using Eqgs. (9) and (8), we reduce Eq.(24) tothe form

B{t,\) = W(t, M) + A [ ky(t, v, A, uly, A))

x (¥, 0) + 1 JGK®, ', V¥, Ndy' dy  (25)
or
Bt N = ¥(t, N + x f5 (R (2, 3,7, uly, 1)
+ xfé Rty A u(y', K, y, Ndy')
X ¥(y, A)dy. (26)
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Making use of Eq. (22), we observe that

O0=t=1.
(2m
Furthermore, from the definition of the function g in
Eq.(23) we have

Bt X) = W(t, ) + A [ K(t, v, \)¥(y, N)dy,

B(t,0) =g(t,0), O0=<t=< 1. (28)
Keeping Egs. (8) and (10) in mind, we see that
Blt, ) =u(t,x), O0=t=<1 O=sxrx=<A, (29
i.e.,
u(l, ) = g(t, ) + X [g bt 3, A, uly, M)y,
O0=t=<1 O0=x=4, (30)

which completes the demonstration.

4. NUMERICAL ANALYSIS

The Cauchy system may be handled numerically by
using the method of lines.1® Much previous ex-
perience indicates the efficacy of such an approach.2,3
The general idea is to approximate integrals on the
interval (0, 1) by means of a quadrature formula of
order N,

N
1
Jostray = 25 frw. (3)
i=
In that way the differential integral equations are
approximated by a system of ordinary differential
equations as closely as desired. By introducing
u('ri, A) = ui()\), (32)
‘I’(?’i,R) = ‘Pi(h); (33)
K(ri,yj,)\) = Ki].(x), ,j=12,...,N, 0=2x=A,
(34
Eq. (8) becomes,for example,
N
duf0)/dx = ¥,(\) + A Z}l K, )%, (\w,, (35)
m=

with similar equations approximating Eqs.(13), (9), and
(10) and the initial condition in Eqs. (10) and (14), In
all, there are N2 + N ordinary differential equations
subject to known initial conditions. In 1971 this is
reasonable for N= 50,

Successful calculations for the Ambarzumian integral
equation of radiative transfer have been done.11,12

5. DISCUSSION

In this paper we have shown the equivalence between
a general class of nonlinear integral equations and a
Cauchy system. Much remains to be studied analyti-
cally, especially with regard to bifurcation pheno-
mena. On the computational side, we plan to under-
take sample calculations in radiative transfer,12
optimal filtering and modulation,13 and neuro-
physiology.?
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In this work, operator valued measures are used to study finite and infinite sequences of measurements. It is
shown that to each such process ¢® there is uniquely associated a probability operator measure 049* which
contains all the statistical properties of the process. In order to make this association for infinite processes,
the operator valued equivalent of the Kolmogorov extension theorem is needed. This theorem is given and
proved. It is then shown that for each ¢ and each set E of possible outcome sequences, there are two ways to
find the probability that carrying out g4 on a system in state p gives an outcome sequence ¢ in E. The usual
method of repeating g® on p over and over again generates a sequence a of outcome sequences ¢. The proba-
bility is obtained as the limit relative frequency that o(j) is in E for j = 0,1, ... . The other, new, method is
the repeated measurement of 0% on p. The remarkable aspect of this equivalence is that the mathematical
procedures of the usual method for determining if a(j) is in E or not ‘disappear’ into the operators og of
the new method. This is discussed in some detail and examples are given.

I. INTRODUCTION

Although not yet in wide use, operator valued meas-
ures appear to be a useful tool, particularly for the
study of processes in Quantum Mechanics. This is
exemplified by the work of Davies and Lewis! who
have given a very general treatment applicable to
processes with a finite number of steps. In particu-
lar, their description of sequences of measurements
allows use of observables with continuous spectra
and does not use Von Neumann's projection postu-
lates.2

In this paper, the relationship between compound pro-
cesses and operator valued measures is studied
further. The work here is more restricted than that
of Davies and Lewis in that the usual formalism,
which is restricted to observables with discrete
spectra and uses Von Neumann's projection postulate,
is employed. It is more general in that the treatment
includes processes with an infinite number of steps.

A main result of this work is that to each compound
process of a finite or infinite number of steps there
is associated in a unique manner a probability opera-
tor measure which contains or encodes all the statis-
tical properties of the process. Furthermore, this
association is exhaustive in that all processes of the
type studied here are included. That is, the operator
sequence, the time spacing between measurements,
and the time-dependence of the Hamiltonian are arbi-
trary. The construction of this mapping for both
finite and infinite processes occupies Sec. III.

Section II collects together some mathematical pro-
perties of positive operator measures which are
relevant to this work. The main result which is
needed for infinite processes is Theorem 4. This
theorem is an extension to positive operator meas-
ures of a theorem of Kolmogorov3,4 for probability
measures, which states the existence and uniqueness
of a probability measure on an infinite product space,
given a consistent set of probabilities on the compo-~
nent finite product spaces. As proved here, Theorem

4 is more general than is needed and may have use
in extending the work of Davies and Lewis! to include
infinite processes.

If one assumes that to each bounded self-adjoint
operator on an appropriate Hilbert space there cor-
responds an observation procedure,® then a remark-
able property of these operator measures emerges.
It is first seen that for each event E in a o-algebra Z
of subsets of the.certain event  there are two ways
to determine the probability that carrying out the
process on a system in state p gives an outcome
sequence in E. One is the usual statistical method
which consists of carrying out the process on the
system over and over, infinitely many times and
determining the limit relative frequency that the
elements of the resulting sequence lie in E. The
other, which is new, consists of repeated measure-
ments of the particular operator O, which the pro-
bability operator measure assigns to the event E, on
the system in state p.

This equivalence as well as a “first order” equiva-
lence, which removes the infinite repetition of carry-
ing out the process on a system in state p, is dis-
cussed in Sec.IV. There it is shown by means of
sample space constructions that the two methods are
equivalent.

In Sec.V this equivalence is discussed further. It is
seen to provide an interesting link between mathema-
tical procedures and physical operations in the fol-
lowing sense: 1) Each E € T corresponds to some
mathematical property @ where E = [¢ | Q (¢) true].
2) In the standard statistical method, one generates
from one or more outcome sequences, an infinite
sequence § ; of 0's and 1's, whose limit relative fre-
quency gives the desired probability TrpO ; that
carrying out the process on a system in state p gives
an outcome sequence in E. This generation involves
a sequence of mathematical decision procedures
about whether Q(¢) is true or false for different ¢

as well as (in the “first order” case) the construction
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In this work, operator valued measures are used to study finite and infinite sequences of measurements. It is
shown that to each such process ¢® there is uniquely associated a probability operator measure 049* which
contains all the statistical properties of the process. In order to make this association for infinite processes,
the operator valued equivalent of the Kolmogorov extension theorem is needed. This theorem is given and
proved. It is then shown that for each ¢ and each set E of possible outcome sequences, there are two ways to
find the probability that carrying out g4 on a system in state p gives an outcome sequence ¢ in E. The usual
method of repeating g® on p over and over again generates a sequence a of outcome sequences ¢. The proba-
bility is obtained as the limit relative frequency that o(j) is in E for j = 0,1, ... . The other, new, method is
the repeated measurement of 0% on p. The remarkable aspect of this equivalence is that the mathematical
procedures of the usual method for determining if a(j) is in E or not ‘disappear’ into the operators og of
the new method. This is discussed in some detail and examples are given.

I. INTRODUCTION

Although not yet in wide use, operator valued meas-
ures appear to be a useful tool, particularly for the
study of processes in Quantum Mechanics. This is
exemplified by the work of Davies and Lewis! who
have given a very general treatment applicable to
processes with a finite number of steps. In particu-
lar, their description of sequences of measurements
allows use of observables with continuous spectra
and does not use Von Neumann's projection postu-
lates.2

In this paper, the relationship between compound pro-
cesses and operator valued measures is studied
further. The work here is more restricted than that
of Davies and Lewis in that the usual formalism,
which is restricted to observables with discrete
spectra and uses Von Neumann's projection postulate,
is employed. It is more general in that the treatment
includes processes with an infinite number of steps.

A main result of this work is that to each compound
process of a finite or infinite number of steps there
is associated in a unique manner a probability opera-
tor measure which contains or encodes all the statis-
tical properties of the process. Furthermore, this
association is exhaustive in that all processes of the
type studied here are included. That is, the operator
sequence, the time spacing between measurements,
and the time-dependence of the Hamiltonian are arbi-
trary. The construction of this mapping for both
finite and infinite processes occupies Sec. III.

Section II collects together some mathematical pro-
perties of positive operator measures which are
relevant to this work. The main result which is
needed for infinite processes is Theorem 4. This
theorem is an extension to positive operator meas-
ures of a theorem of Kolmogorov3,4 for probability
measures, which states the existence and uniqueness
of a probability measure on an infinite product space,
given a consistent set of probabilities on the compo-~
nent finite product spaces. As proved here, Theorem

4 is more general than is needed and may have use
in extending the work of Davies and Lewis! to include
infinite processes.

If one assumes that to each bounded self-adjoint
operator on an appropriate Hilbert space there cor-
responds an observation procedure,® then a remark-
able property of these operator measures emerges.
It is first seen that for each event E in a o-algebra Z
of subsets of the.certain event  there are two ways
to determine the probability that carrying out the
process on a system in state p gives an outcome
sequence in E. One is the usual statistical method
which consists of carrying out the process on the
system over and over, infinitely many times and
determining the limit relative frequency that the
elements of the resulting sequence lie in E. The
other, which is new, consists of repeated measure-
ments of the particular operator O, which the pro-
bability operator measure assigns to the event E, on
the system in state p.

This equivalence as well as a “first order” equiva-
lence, which removes the infinite repetition of carry-
ing out the process on a system in state p, is dis-
cussed in Sec.IV. There it is shown by means of
sample space constructions that the two methods are
equivalent.

In Sec.V this equivalence is discussed further. It is
seen to provide an interesting link between mathema-
tical procedures and physical operations in the fol-
lowing sense: 1) Each E € T corresponds to some
mathematical property @ where E = [¢ | Q (¢) true].
2) In the standard statistical method, one generates
from one or more outcome sequences, an infinite
sequence § ; of 0's and 1's, whose limit relative fre-
quency gives the desired probability TrpO ; that
carrying out the process on a system in state p gives
an outcome sequence in E. This generation involves
a sequence of mathematical decision procedures
about whether Q(¢) is true or false for different ¢

as well as (in the “first order” case) the construction
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of some mappings. 3) By means of the equivalence,
this whole mathematical procedure of generating 6,
“disappears” into an appropriate operator O, in the
sense that it is replaced by the purely piysical opera-
tion of measuring O, on p over and over again.

Besides some examples which illustrate this prop-
erty, Sec. Vincludes somebrief comments on possible
extensions of the construction given here.

II. MATHEMATICAL PROPERTIES

Let Q be a set and Z a o-field of subsets of Q. That
is, Z is a set of subsets of @ which contains £ and is
closed under countable unions and complementations.
Let B(X) be the set of all bounded linear operators
on a Hilbert space J. Let B(%¢)* be the restriction
of B(C) to the positive operators. A is a positive
operator if A = 0;that is (y, Ay) = 0 for each y in X,
Each positive operator is self-adjoint6 and thus each
A in B(3)* is self-adjoint.

A positive operator measure O is defined to be a
mapping with domain £ and range in B (¥)*, such that
O is finitely additive and strongly countably additive
on T. That is, for each sequence {E,|n = 0,1, - --}of
pairwise disjoint sets in Z,with E =U E, ,

n

0;=%0,, &

where the implied convergence is in the strong
operator topology.

It is an immediate consequence of this definition that
0,=0, )

where ¢ is the empty set and 0 is the zero element
of B(3C).

This definition is a specialization of the more general
definition of operator valued measures as countably
additive set functions with range in B(X, Y), the set of
all bounded linear operators from a Banach space X
to a Banach space Y. Since B(X,Y) is a Banach space
under the uniform operator topology,? many, but not
all properties of the better known vector valued
measures8,? can be taken over to operator valued
measures. An example of a property which appa-
rently cannot be taken over is that while Pettis’
theoremB8 gives the result that, in the operator topo-
logies, weak and strong countable additivity are
equivalent, they do not imply uniform countable addi-
tivity.10

The definition of Eq. (1) can be trivially extended by
allowing Z to be a field (or a ring)1l and we shall
often do so without comment. Theorems 1-3 which
follow, hold for rings and o-rings as well as for
fields and o-fields.

Some properties of O are as followsll: if E,Fec 2
and E C F, then

Op—0, =0, _; (3)
and
Op,=0. “4)

These results follow from Eq. (2), the positivity of O,
and F = EU(F — E) with En(F— E) = &. Also,for
each E € Z,
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0=0;= 0y, (5)

and thus O is bounded by O, .
Also, one has

Opnrp =0g and O, (6)
Og,rz0z and Oy, (7)
Opr =04 — Oy, (8)
Op =O0pag +Opqg, 9)

where E' = @ — FE is the complement of E. Note that
for any E if (4,0 z¢) = 0 for ally €3¢, then O, = 0.

Let ¢(0 ) denote the spectrum of O, . The above
shows that 0(0z) C [0, [0, |] for each E.

A probability operator measure is defined to be a
positive operator valued measure for which

O, =1. (10)

Let p be any normalized state over 3. Clearly by
Eqgs. (1)-(5) and (10), the scalar set function Py,
defined for each E < Z by

P,, (E) = TrpO (11)

is a probability measure. We shall be mainly con-
cerned here with probability operator measures. Let
O be a probability operator measure. Then for each
E € Z,0, is a positive contraction operator and the
spectrum of O, lies in [0, 1]. Also if (/,0.¢) =1
for each iy € ¥, thenO, = 1.

It is clear from the above definition that spectral
measures of self-adjoint operators in B(J) are
simple examples of probability operator measures.
The range set of a spectral measure is a set of
mutually commuting projection operators. The mea-
sures studied here generalize spectral measures in
that the operators in the range set do not have to
commute or be projection operators.

Berberianl! has given a different definition of posi-
tive operator measures which replaces strong count-
able additivity by finite additivity and strong contin-
uity from below. We show that the two definitions
are equivalent.

A positive operator measure on a field Z is sfrongly
continuous from above (below) if for all nonincreas-
ing (nondecreasing) sequences of sets Eg, Eq, --- in
Z such that lim E, = E € Z,one has O, = s{trong) —
lim, Oy . O is s-continuous on Z if it is both s-con-
tinuous from above and below.

Theorem 1: I O is a positive operator measure
on a field Z of subsets of Q then O is s-continuous
onZ.

Proof: a) O is s-continuous from below.

Let{E |n=0,1,...} be a nondecreasing sequence
of setsin Zwith lim E = E€Z. Then E = EIJE,, =
EqUE; —EqU ---=A3UA U ---,where A, = E, —

E,_;,A,=E,and the A are pairwise disjoint.
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Since Z is a field, A, € Z and the strong ¢-additivity
of O gives

[T
<los - £ o Jul+1(£ 04,0,

=0 T oEJ‘)wll

=“<OE - i OAJ.)W“ ~»0asn >

as 2 04;=0yp 4 =0z,

b) O is s-continuous from above.

Let {En [n=10,1,...} be a nonincreasing sequence
of sets in Z with lim E, =N _E, = Ec Z. By the
set identities, E’ =U, E; for the complements of £
and E, . Since {E,} is nonincreasing, {E.} is non-
decreasing with E;, and E' both in Z. Equation (8)
and part a above give

@5 —O_oe, 0 |= 0o =0y s,

QED

Theorem 2: Let O be a finitely additive B(5¢)*
valued set function on a field Z. If O is either s-
continuous from below or s-continuous from above
at &, then O is strongly o-additive on Z.

Proof: If O is finitely additive, Eq. (8) holds. Repe-
tition of the proof of part b, of Theorem 1 gives that
O is s-continuous from above. Thus it is sufficient to
prove the theorem under the condition that O is s-
continuous from above at &.

Let {E,} be a sequence of pairwise disjoint sets in Z
withU, E, = Ec Z and let F, =U” | E,. Clearly the
sequence of sets {E — F,} is nonincreasing with
lim,E—F, =® and E— F, € Z. Since F, C E, Eqgs.
(2) and (3) and the finite additivity give with s-
continuity from the above at &,

” ©e nji:)o OEj)W”:“ O _OFn) =l Of-r, vl=0

asn-—> ©,
Thus

n
O=s—1lim, 2,0, . QED

i=o 7
From these two theorems, one concludes that Ber-
berian's definition of positive operator measures and
that of Eq. (1) are equivalent. Note, too, that by
Pettis’ theorem,8 strong continuity is equivalent to
weak continuity.

We come now to the extension theorem.

Theovem 3: Let O be a positive operator measure
on a field Z. Then O can be extended to a positive
operator measure O’ on the minimal o-field Z over
Z such that O’ = O on Z. Furthermore, the extension
is unique in that if O; and O, are extensions of O
then 01 = 02.

Berberianll has given a proof of this theorem which
uses the Hahn extension theorem8 to extend the
family [ (), O- ¥)|¥ € X] of scalar measures to the
family [ (y,0% ¥ )|y € X]. He then shows that this

E,)w“—m asn > o,

family defines a positive operator measure on Z. One
can also give a more constructive proof of this theo-
rem by using the transfinite induction process12
which generates Z from Z to extend O from Z to .13

Here, the importance of the extension theorem for
positive operator measures is that it allows one to
prove the theorem needed to assign probability
operator measures to infinite processes. Let R* and
R denote the Cartesian product of n copies and de-
numerably many copies, respectively, of the real line
and let @ (R*) and ® (Rv) be the respective o-fields of
Borel subsets of R* and Rv. A subset Eof Rv is a
Borel cylinder set if it can be written in the form

E=FXRXRX..-

with F € B (R”) for some n. Clearly for each cylinder
set, there is a least » such that this property holds.

F is called a base of the set E. Let § be the set of
all Borel cylinder subsets of Rv. Clearly ¥ is a
subfield of BRv).

Let {07} be a sequence of positive operator measures
such that O is defined on ® (R?) forn =1,2,---.

The sequence is said to be consistent if for each m
and n with m = n and for each pair of sets E, F with
E c®(Rm™), Fc® (R*) such that E = F X R™™ " one

has 0% = OZ.

Theovem 4: Let {0 be a consistent sequence of
positive operator measures on the sequence {& (R")}
of o-fields. Then {07} extends to a unique positive
operator measure O on the o-field @ (R¥) such that
for each E € ¥ with base Fe ® (R?), O, = O%.

Proof: The proof follows that given by Kolmogo-
rov3,4 for probability measures. Let § be the field
defined above. Define an operator measure O’ on &
by O} = OZ for each set E € § with base F € ® (R*).
Since the O* are consistent and o-additive on the
® (R»),0' is well defined and finitely additive on &.

If one can prove that O’ is strongly continuous at &
on ¥, then it follows from Theorem 2 that O’ is
strongly o-additive on ¥. The extension theorem then
gives the desired result with O = O’ on &.

For the proof of the strong continuity of O’ at @, it is
sufficient to prove the converse. That is, let {E,,} be
a nonincreasing sequence of sets in ¥ such that for
some vector ¢ in X and some € >0, |05 ¢ || > € for
each n. We must show that lim, E, is not’empty.
Furthermore, it_is an inessential simplification to
assume that {En} is such that for each n,E, has a
base F, € B(R").

Now by construction, 0% ¢ [|=[0% ¢ [> €. For
each n,0" is s-continuous from belov (Theorem 1)
and regularl! on ® (R*). Thus for each 6 > 0, there
is some bounded closed set B, such that

0
on+l '

Let G, € § be the cylinder set with base B, . Then
G, C E, and

B,CF, and | 0z ~0p)vl=ll0z 5 vi< (3")

IO, — 03w =105, —05)¥l=1105 ¢ wi<

Define W, by W, =N} , G,. Since E, — W, =
Uz, (B, — G;) € U} o(E; — G,), one has

2n+1
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10% -, wli< E ||0 -6; vil<e.
Since W, C G, C En,Eq. (4) gives
6> ||(0§n- oy wl>| o ¥l
—”O'wn‘l’" or IIOWntP”> €—6>0

if 6 is sufficiently small. Thus W, is not empty and
we can choose a point ¢” in W,. Carrymg this out for
each n yields a sequence {67} Such that ¢+ * € W, for
eachk=10,1, . Thus ¢7**is in G, and E, and
pr*keB, where ¢,;" is the initial segment of ¢m of
length #.

Consider the sequence ¢m(0) for m = 0,1, . Since
B, is bounded {¢"‘ } contam ? convergent subse—
quence ¢ ™0 (0) with lim, ;97°%(0) = xo €R. Simi-
larly, the sequence ¢™° 2 (1) fori = 0, 1 . contains
a convergent subsequence ¢™°1% (1) with lim, ¢ ™06
(1) = x,. Continuing in th1s fashion, one generates for
each & a sequence {¢ ™0 e k@ i = 0,1, -+ of of
sequences such that for each i<k, lim, ¢>"‘° 1, 6@
(§) = x;.

By the diagonal procedure, one chooses a single
sequence of sequences {¢p™0.1.....28 (=0 1 .. .}
such that lim ,¢™0.1..... &* (j) = x, for each j. From
this one can define a sequence ¢ by ¢(j) = x; for
each j. By construction and the fact that B, "is
closed, one has ¢, € B, for eachn. So ¢ € G,CE,
for eachn. Asaresult,¢ € N, E, so lim, E, is not
empty. QED

We now give some other, more general properties of
operator measures. Let (2, B(¥)) be the set of all
operator measures from % to B(3). A general B(3C)
valued operator measure is a set function with
domain Z and range in B(3C), the set of all linear
bounded operators on &, which satisfies Egs. (1) and
(2). 6(Z,B(0)) is a Banach space under the norm?

ol = sup |04l . (12)
EeX

That is, it is closed under scalar multiplication and
addition of measures, it is closed with respect to the
norm, Eq. (12), and it is complete. A proof of this
follows Dunford and Schwartz (Ref. 7, pp. 160-63).

Let T be any set transformation which is measurable
and preserves set operations. A set transformation
T is measurable if T takes sets in T into sets in Z.
T preserves set operations if T®¢ = &, TQ = Q,
TU,E, =VU,TE,,and T(E — F) = TE — TF for all
subsets E, F,  E, of Q. In what follows, T will always
denote such a transformation and 7" E denotes n
applications of T to E.

Each transformation T as defined above induces a
linear transformation 7: 6(Z,B (%)) = 6(Z, B (X))
according to

T0, = Opp (13)

for each O € 8(Z,B (X)) and each Ec Z. To see that
Eq. (13) induces a linear transformation let 0’ =

a0 + BO” with a, 8 arbitrary complex numbers. Then
TO'E = O,TE = aOTE + BO’TI‘E = QTOE + ﬁTOg- for
each EcZ.

Let 7(0) denote the set of all linear transformations
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T:6(Z,B(3)) > 6(Z,B(I)). Clearly T(6) is an algebra
under the usual definitions of multiplication and addi-
tion. It is also a normed algebra under the norm
given by

ITi= sup [TO|. (14)
Holi< 1

Any 7 in 7(9) induced by a T through Eq. (13) is a
contraction operator.

Proof:
| 71= sup || 70|
o<1

= sup sup [|0,zlls su sup ||O
lole1 per  TE'T 011 sen el
where the measureability of T and Eq. (12) have been
used.

Define —Y—‘n by
_ 1 n-1 .
7,0=, 2 770 (15)
i=0

for each O in 6(Z, B (X)) where (770); = O 1jp for
each E € Z. Clearly 7, is linear and bounded if T is.
Of special interest are those O for which 07 defined

07 =1im,T,0 = 70 (16)
exists.
The relevant ergodic theorem is the following.14

Theorem 5: Let || T, || =c for each n for some
fixed constant ¢. Then the set of O for which 7,0
converges is a subspace 8’ of 9(Z,B (X)) which con-
tains all those O for which the set 7,0 is weakly
sequentially compact and 770/n— 0,

Also T is a projection operator on 6’ which decom-
poses 6’ into two subspaces 9 and 6y where any O in

4 = 76’ is 7 invariant (that is 70 = O) and 0} =
closure of (1 — 7)6’.

The proof is given in Dunford and Schwartz (Ref. 7,
pp. 660-62).

For any 7 induced by a T by Eq. (13), || T{ =<1. Thus
Ii T =1and T70/n— 0. In this case the weak se-
quentlal compactness of {T O} is a sufficient condi-
tion of convergence for 7,0. Different convergence
conditions for contraction operators are given by
Sine.1%

For any T induced by a 7,07 has the following pro-
perties (provided lim, 7, 0 exists):

0%, =07 a7
for each E in . This is a result of 770 = TO. For
any F in Z which is T invariant (TF = F),

0f=0,. (18)

Thus O and O coincide on the sub o-field of T invar-
jant sets in £. Finally one has

Theovem 6: Let T be induced by some measurable
T which preserves set operations. Then if O is a
probability operator measure and O7 exists,07 is a
probability operator measure.
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Proof: ByEgs. (12), (15), (16), and the hypothesis of
the theorem, one has that for eachz and y in X,
T,0_y isa vector measure and lim, 7,0, = O‘r
ex1sts for each E in Z. By a result of Dunford and
Schwartz (Ref.7, Theorem 6, p. 321), 07y is a vector
measure and thus O7 is an operator measure. That
07 is a probability operator measure follows from
that property of O and Egs. (4), (15), (16), and (18).

QED

This completes a brief survey of the properties of
positive operator measures which are relevant for
this work. Other properties can either be obtained
from similar properties for vector valued mea-

sures® 2 or can be obtained directly from the litera-
ture. 10,11,16

. COMPOUND PROCESSES
A. Finite Processes

We begin with some definitions—a finite process g4

of n steps consists of the following things: (1) a se-
quence A of n — 1 times, (2) a unitary time translation
operator U(¢,¢'), and (3) a sequence g of n observables.
g2 corresponds to the process—measure ¢(0) on an
system at time ¢ = 0, observe outcome, measure g{1)
on the “same” system at A,, observe outcome, ...,
and measure ¢(z — 1) on the “same” system at A,_4
and observe the outcome.

In this work, g is restricted to be a sequence of dis-
crete observables. That is, for each j, g(j) isrequired
to be in B(X),, the set of all self-adjoint operators in
B (3C) with discrete spectra. (The convention is fol-
lowed here of identifying observables with the self-
adjoint operators to which they correspond). “Coarse
grained” operators which replace the continuous ones
with a finite or infinite number of real line intervals
and whose eigenvalues label the intervals are included
here.

For eachj let

= X sPJ,
sES]-

where S; is the at most countably infinite eigenvalue
set of q(]) and Pqu' is the projection operator corres-
ponding to eigenvalue s of ¢(j). Let S%= Sp X *or X
S,-1. 5" is the set of all possible outcome sequences
¢, of gA. Let Z* be the set of all subsets of S%.
Clearly Z# is a o-field.

(19)

As an intuitive basis for the construction, consider a
two step process, where

q(0)=A,= 2, sPQ and ¢q(1) =

SESg

A1 = E S,Psl,.
sles1
According to the Von Neumann projection postulate,2

if one measures A, on a system in state p at time
zero and observes outcome s, then state p becomes
P, With
PO ppo
0 So
% TrP; p

If one waits until time A; and measures the obser-
vable whose operator is

A= 2 s'Pl

s'€S,

235
and observes outcome s,, the state p sq becomes
Psys, with

Psl1 Ua,g, O)psoUT(Al, O)Psl1
Ps, (21)

1T Tr(PIU(A, 0)p, UT(ay,0BY)

The denominator of Eq. (20) is the probability of ob-
serving outcome s, when 4, is measured on p, and
the denominator of Eq. (21) is the conditional proba-
bility for observing outcome s; when A, is measured
after A,, given that s is observed on state p at time

The unconditional probability of observing d)z( ) =8,
at time 0 and ¢,(1) = s, at a time A, later is given
by
P9, = Tr(B1U(a;,0)P0 pP UT(81,0)R1).  (22)
In general, the unconditional probability that the out-
come sequence ¢, lies in some subset E of S; X §;
is just

= 2 P {s,}. (23)

¢2€E

A standard empirical meaning of these probabilities
is that if one repeats over and over the process—pre-
pare a system in state p, measure A, observe out-
come, measure A after a wait of A, observe out-
come, discard system—then P » (E) is the limit rela-
tive frequency that a two outcome sequence in the
infinite sequence of two outcome sequences so ob-
tained will be found to lie in E. Equivalently, one can
regard the state pso,,.l as that assigned to a selective

preparation procedure with two filtering steps and
the probability of Eq. (22) is the fraction of systems
passed by the filter.

The construction process for an n step process g2
is as follows: For each e1genvalue sequence ¢, of
length » define the operator Bg by

A -2
Bq _Pa(?” 1%.) U(An 14 -2)Pq(;‘n—%)

¢q 8; U(Al’ 0) ¢q ((03) (24)

For each singleton set {¢,}, define the operator Oy 0,)
by

At 1t
Otg,) = B, P, (25)
and for each £ < Z* define O, by
Op=2J Oto, ) (26)
O EE

where the implied limit is in the strong operator
topology. Finally for & set O, = 0, the zero operator
in B(3C). ,

It is clear that this construction associates to each E
in Z* for which the limit implied by Eq. (26) exists,

a positive self-adjoint operator O in B(¥). Clearly
O 3 is self-adjoint and pos1t1ve The positivity fol-

lows from 0= 1B, W12 = (8, ¥,y W)= W,0( )
for eachy and ¢,,. *

In order to show that O, exists for each E € Z*# one
needs Ogn. From Eqs. (24)-(26) one has

Osn: Z} Z;

(0] =1.
[ (n-l)ESn_,l {¢n}

@7
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To get this result the facts that UT(A A, _1) U(A
;-1) = land Zses P = 1for each]< n have been
used

Let {E]} be some nondecreasing sequence of finite
subsets of E such that lim]E]. = E. Consider the
sequence (w,OEjl,b) for any ¥ € X with O, given by

‘ J
a finite sum over ¢,, Eq. (26). By Eq.(27),0; =1
for each j and thus (V,0, ¥)isa nondecreasi]ng

i

sequence bounded from above by (,¢¥). So lim, W,
O.¥) = (,Ozy) exists and, for each € > 0, (,
Og— OE Y) < €2 for allm > some N.

Nowforanym 0=0,—0;, =1, Thus
Il ¢ OE_OE )W”z_(‘tb (o OEm)ZQD)S(l,U,(OE
g ¥ < €2 and [(O; — O, )Y 1< e. So one has
m m
Op=s— liijEj.
From the above, one has that O is a mapping with
domain = and range in B(X)* with O, = 0 and
Ogn = 1. To see that O is a probability operator

measure let {E,,} be a sequence of pairwise disjoint
subsets of S* with E = U _,E, . Then Eq. (26) gives

20 Op 1= O;,1=2,0 28
¢, EE {on} ;n; ¢nZ€>E”‘ {o) % Em 28)

or O is strongly o-additive. {This follows from the
fact that for each vector ¥ and each ¢, in S*@,
Ow )t,l/) = (. Since the sum of a convergent series of
nonfiegative numbers is independent of the arrange-
ment of the terms,

¢nZéE W,0(s)¥) = %; ¢nZ€>Em('~//,O{¢n)‘P):]

Thus, Eqs. (1), (2), and (10) are satisfied and O is a
probability operator measure on Z*.

0p =

The above results show that the construction of

Eqs. (24)-(27) associates to each process g2 a
unique probability operator measure O (or O‘IA)
which depends on the sequences g and A and, through
the operators U(4;, A;_,), on the Hamlltoman H. For,
given g, A, and H, the operators B'I are uniquely de-

fined by Eq. (24) and thus Eqs. (25) (27) define O,
uniquely for each E € Z*.

This construction includes all Hamiltonians no matter
what time variation they have over the time interval
2, éA Thus all external fields are included. Note
also that if ¢ is fixed, then for each A and each H the
construction assigns a unique O in the space ®(Z*,
B(3)).

Besides depending on ¢, A, and H,0 also depends on
the projection axiom.2 This was used to write down
Eq.(24). As is well known,17 there are measurement
procedures for which the axiom is invalid. If one
assumes that for each observable there is a proce-
dure which satisfies the axiom, then this problem can
be avoided. The treatment of the more general case
in which Von Neumann's projection axiom is not valid,
will be postponed to future work.

Finally, it should be noted that this construction in-
cludes processes which generate finite sequences of
independent uncorrelated single measurements. To
see this let J¢» = ®7-1 3, be the tensor product of n
copies of 3 andB(JC”) the algebra of bounded linear
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operators on J*, Let the process g be such that for
eachjsn—1, g(j)=13% --- X1, ><A]><1]+1
oo X1, q,where A, B((}C]) . Le{ the time trans-
lation operator U(0, . n — 1,¢,¢') be such that
U,...,n—1,t,¢) = U (t t’). The use of these
definitions in Egs. (24) and 2{5) gives the results that
BqA =®'."1Pqi(].)U (a,,0) and0(¢)_®" sU;7(a,,0)
P¢J( ) ](
clear that the probability operator measure O asso-
ciated with this g2 has domain Z” and range in B(J?).

Now let the state p(0,...,n— 1) be given by p(0, .

n—1) = ®]”_01 P, where is a state over J;. In this
case the scalar probab111t7y measure Py, which des-
cribes the sequence of measurements is a product
measure asPop{¢1n} = TrpO{%} = H?z‘ol Tr(pj th

(A, O)Pq, o U; (A]., 0)). Thus in this case carrying

,0). From these results and Eq. (26), it is

out g2 on a system in slate p is equivalent statisti-
cally to a sequence of n-independent uncorrelated
measurements in which the jth consists of measuring
UJ."‘(AJ 0)A; U(A], 0) on a system in state pj-

B. Infinite Processes

For an infinite process, g now becomes an infinite
sequence of observables or self-adjoint operators in
B(X), and A becomes an infinite sequence of time
intervals. Again we make the simplifying restriction
that for each j, ¢(j) has only a discrete point spec-
trum S; ; operators with continuous spectra will be
treated in future work.

The process g2 here corresponds to the extension of
the finite case. That is “measure ¢(0) on a system
at £ = 0, observe outcome, measure ¢(1) at A, on the
same system, observe outcome, ... .” In general
such a process takes an infinite amount of time to
carry out, unless, of course, Z, 4, is finite.

Let Sw = 8§, X §; X --- with ¢ denoting an element
of S, Clearly S« is the set of all possible outcome
sequences for g2. Let F denote the field of all cylin-
der subsets of S¥ and Z« the minimal o-field over
¥. Since the eigenvalues of observables are real
numbers and each SJ. is countable, one has S¥ C Rv
and Zw C B(Rw). The latter follows from the facts
that & C F& the field of all Borel cylinder subsets

of R¥ and ®(Rv) is the minimal o-field over J&,

The probability operator measure O for the process
g2 is obtained as follows: One first constructs for
each n a probability operator measure 0% on X*
given by

- 0 29
¢E€ » Oton) (29)

n

for each E € £*. Here ¢, € S* the Cartesian product
of the first n elements of Sv and O, 3,18 given by
Eq. (25), where the operator Bg 1s constructed
from the first n steps of the process g2 by the pres-

cription of Eq. (24).

In thlS manner, one generates from g2 a sequence
{on} ¢ of probablhty operator measured defined on
the sequence {Z%} of o-fields. One must show that
{07} ¢4 is consistent. To this end, let n> m and let

E C 8* and F C S™ be such that

E=FxS, X ---X8§, 4
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One must show that 02 = O7. But this follows from
the facts that UTU = 1,2 o5 P2U) =1 for each j
and P2 =P as ’

at
=% X o 5 BB, A
¢m€F smesm srz—lesn»l m
) -
X Psq”fm UT(A"H-]_,Am) e UT(An-l,n'z)PSqn(—nl v

(n-1) (m) A
X Psqn—nl U(An-l.An-z) te .Psqmm U(Am,Am-l) Bgm
—or.

Thus {07} 7% js consistent.

The construction of O on X% from the sequence {O"}"A

proceeds as follows: For each #, one constructs a
probability operator measure O’ on ® (R”) from O”
on Z* according to

03 =05, (30)

for each n and each Borel set B € ® (R”?) and where
Eg =B NnS*. Equivalently Of" = EO{"¢n} , where the
sum is over all sequences in $* which lie in B. It is
clear from this construction that 0'? is well defined.
For if B, and B, are Borel sets in ® (R*) with B, =
B, mod §% then Eq. (30) gives Oz" = Og*. Further-
more, since Z* C @ (R"), for each E € 3#, 07 = O%.
From this argument it is also clear that {07} isa
consistent sequence of probability operator meas-
ures on {® (R")}.

Theorem 4 now gives the result that there exists a
unique probability operator measure O’ on ® (Rv)
such that for each cylinder set G € FE with base
Be B (R"),

0L =04, (31)

Since Zv is a sub o-field of (R¥), one defines O as the
restriction of O’ to Zw. That is, O is given by

0, =0% (32)
for each E € Zv.

Thus by the above construction, there is associated
with each infinite process g4 a unique probability
operator measure O. The uniqueness follows from
the uniqueness of the O'* Eq. (30), and theorem 4.
That O is a probability operator measure follows
from Egs. (30)-(32),S¢ € Zw,and Z«v C (Rv).

It is of interest to consider the singleton sets {¢}
Since for each j,S; is countable,{¢} € =« for each
¢ € Zw,s0 O is defined on each {¢>} In fact one can
define O¢g by

s
_ N _ . qA qA
Ofey = s-llmn0{¢n} = s-lim, B¢n B‘bn

with ng given by Eq. (24) and ¢,, the initial segment
of ¢ of length n.

Clearly the right-hand limit exists and equals O, .
To see this, note that {qb,,} is the base for the cylinder
set F,= ﬂ;;(l)Eq&(j).j,where Ed,gj),j:[ele(j) = ¢ ().
Since Fg, F; -..1is a nonincreasing sequence of sets
with lim, F,, = {¢}, Theorem 1 gives the desired re-
sult. By Egs. (2) and (4) one has that 0 = 0,; = O
for eachn. "

A common type of infinite process is one for which
the associated (scalar) probability measure P is non-
trivial. That is P{¢} = 0 for each ¢ € Sv, This
corresponds here to the situation in which ¢4 and p
are such that Trp O{"¢A) = 0 for each ¢ € Sw,

Examples of this type include infinite sequences of
uncorrelated independent single measurements. It
appears that these can be included in the construction
given here by extending the corresponding construc-
tion of the finite case to the (nonseparable) Hilbert
space ¢, which is the infinite tensor product ®32 3,
of copies of JC.18 However we will not go into this
here.

As in the finite case, 092 depends on ¢, A, and the
Hamiltonian H. In this case, however for processes
which last forever, H can have an arbitrary time-
dependence for all of calendar time. That is, the
time-dependence of H need not be cyclic or repetitive.
This is in contrast to the finite case in that if one
wishes to consider an infinite number of repetitions
of a finite process then, with respect to calendar time,
the time variation of H must be repetitive.19

IV. CONSEQUENCE OF THE ASSOCIATION OF
072 TO g2

A. Higher-Order Equivalence

A very interesting equivalence property arises from
the constructions of the previous section. We shall
consider infinite (6 = w) and finite (6 = some #) pro-
cesses together. Suppose one considers carrying out
a § step process ¢2 on a system in state p and wants
to know what the probability is that the outcome
sequence lies in some set E in Z%, By the previous
section this probability is given by TrpO; .

Now the standard method of determining this proba-
bility is to carry out an infinite sequence of repeti-
tions20 of g2 on a system in state p. (In this paper,
an infinite repetition of measuring an observable A
on p or carrying out g2 on p means the infinite repe-
tition of the following: prepare a system in state p;
measure A and observe outcome, or carry out g2 and
obtain an outcome sequence; discard system.) The re-
sult is an infinite sequence o of sequences in S%.
That is, a(j) is a sequence in S8 for each j. Then the
limit relative frequency that each of the sequences
a(0), a(1), ... is in E is given by TrpO,. That is,
generate an infinite sequence ¢ ;& of 0's and 1's from
a by the prescription (6, a)(j) = 1 if a(j) is in E and
(0ga)(j) = 0 if a(j) is not in E. Then M6 za = TrpO,
where M denotes the limit mean. Note that in the
simplest case of 8 = 1, 09° reduces to the spectral
measure for ¢(0).

The remarkable point is that there is another equiva-
lent method of determining the value of TrpO,.. This
is, carry out an infinite repetition of measuring 0,
on a system in state p. Then the limit mean of the
resulting infinite sequence B of outcomes equals
TrpO; or M3 =TrpO.

Before proving that these two methods are equivalent,
one should note that the latter method implicitly
assumes that to each self-adjoint operator in B(3C)
there corresponds a procedure for measuring it.5
This assumption has been criticized on the grounds
that it is negated by the existence of superselection
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rules?2 and that no one knows how to measure most
self-adjoint operators.23 As regards the first criti-
cism, it is to be noted that the existence or nonexis-
tence of superselection rules is not related to this
correspondence assumption. For under the 1-to-1
correspondence between observables and self-adjoint
operators, superselection rules are statements about
the structure of B(3C) and XC.

Without denying the second criticism, we would only
point out that the correspondence statement is an
existence statement only. It by no means implies that
there exists an effective procedure for discovering
which measurement procedure is associated to any
given operator.

It should also be noted that this equivalence is the
extension to sequences of well-known properties of
operators in Quantum Mechanics. To see this con-
sider the case for n = 1. Then O¢ is given by Of =
2sesPA@for each E C S and is equivalent to the
spectral measure for ¢(0) = 2 e s SP99. In this
case the first method becomes “measures g(0) onp
over and over again to give an infinite outcome sequence
@ in S§ =Sy X S5 X --- and generate the 0-1
sequence 6 ; (o) by answering—Is a(j) € E ?—for each
j.” The second method is “measure Oz on p over and
over again generating a 0-1 outcome sequence p’.”
Here these methods are closely related because both
B and 6 (@) are 0-1 sequences and all the OF are
mutually commuting projections which also commute
with ¢(0).

Another well-known case concerns the sum of two
observables A and B. As is well known, there are
two ways to measure Trp(A + B) which follow from
the linearity of B(3C). One is to measure A over and
over again on p giving an outcome sequence @, and
then to measure B over and over again on p giving
oy. ThenMo, + Mo, =M(a, + ag) = Trp(A + B).
The other method is to measure A + B over and over
again on p which gives an outcome sequence 8. Then
MpB = Trp(A + B). Of course if A and B do not com-
mute, the spectrum of A + B need have no simple
relation to that of A and of B. Similar arguments
apply to f(A) where f is any Borel function of the
real numbers.

At the risk of belaboring the obvious and to point out
an important but not so obvious aspect of such proofs
we prove that the two methods are equivalent. The
proof consists in constructing for each method an
appropriate sample space, finding the correct random
function which represents the possible outcomes of a
single measurement, and then showing that the limit
mean random function is almost everywhere equal to
TrpO.. An entirely similar proof holds for the
better known cases of A + B and f(4) for observables
A and B,

The sample space for the standard method of deter-
mining TrpOj is ((S9)«, (Z8«,P,,), where (S%)v is
the set of all infinite sequences a of sequences in S%,
(Z8)« is the minimal o-field over the set of all sub-
sets of (S®)v of the form F, = [a | a(l) € E], where
1=0,1,---and E € Z%. P, is the product probabi-
lity measure on (%8« defined by

POpFEl = TrpOy (33)
for each [ and each E € Z¢% and O is the probability
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operator measure associated with the process g2.
The measure defined by Eq. (33) on the class of sets
of the form F, extends uniquely24 to a product mea-
sure on (Z8)w,

Let T, :(5%)¥ = (S%)¥ be the one-sided shift operator
defined by
(Tya)(§) = a(j+ 1) (34)

for each j and each o € (S%)«», In a standard fashion,
T, induces a measurable transformation T : (28« —
(Z¢)v defined by

1E = [a| Tyo € E]. (35)

Clearly T preserves all the set operations.

Let L((S®)w(Z%)v) be the set of all Borel functions
f:(S%)« —> R. T induces a transformation 7, on L
defined on the characteristic functions by

Tl =1Ipig (36)

for each E € (Z%«. Finally for each f € L((S%)v,
(Z9)v) define f,, by

_ 1 m-1 p

Sm = m o Tl f (37)
and ]Tby

f=lim, f,_ (38)

if the limit exists.

For the one-sided shift operator and the product
probability measure of Eq. (33), T; is Py, measure
preserving and the pointwise ergodic theorem holds,25
so f exists,Pop almost everywhere for each f in L.
Furthermore, 7, is P, indecomposable?3 and thus

T = J g0 F@)Py, (da), (39)

POP almost everywhere for each f in L.
Now for each E in Z° define f; by

fgla) = IFE.O (@), (40)

where Fy o = [a|a(0) €E]. Clearly fz(a) = 1(0) if
«(0) €E (a(0) € E). From Eqs. (34)-(36),T{f; =
I Fp and thus f (@) is the limit relative frequency

»J
for finding @ (0), a(1), ... in E. Equations (33), (39),
and (40) give the result that

Moy () = ) =Pop Fy o = Trp0g, (41)
130P almost everywhere for each E € 4.

For the infinite repetition of the measurement of O
on a system in state p, the relevant sample space is
Re,® (Rw),PoEp) where R¥ is the set of all infinite

sequences § of real numbers. ®(Rv) is the set of all
Borel subsets of R¥. As in the case of (Z9)v, it is the
minimal o-field over the set of all Fp, = [818(1)e B]

for 1=0,1,--- and B a Borel subset of R. POEP is
the product probability measure on G(Rv) given by

5 0

Py oFg =Po B = fB d(Tr (p82E)) (42)
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for each [ and Borel subset B of R. Here 8°Z is the
spectral measure26 of the operator O and §,; % =
EOE((— 0, 7]), where (— o, 7] is the set of all real
numbers = 7. As before P, , defined as in Eq. (42)

g3
from a probability measure on ® (R) extends
uniquely24 to a product probability measure on & (Rv),

As before T4 is the one-sided shift operator on Rv
with (T{B)(j) = B(j + 1). As in Eqgs. (35) and (36), T,
induces a T} on B(R*)anda 7 on L (R« B RY),
with 7, and g defined as in Eqgs. (37) and (38) for
each g in L. Since P, , is T, invariant and a pro-
duct probability measure on ® (R%}, the pointwise
ergodic theorem and the ergodic hypothesis? 5 give
that & exists and

EC) =/ ., 8®F, @8, (43)

13% o almost everywhere for eachg in L.

Since the spectrum of O lies in the interval [0, 1},
the measure POE , is concentrated on the subset

[0,1]v of R, andﬁogp (R —[0,1]¢) = 0 for all p.

Now a measurement of O, on any system gives a
number in [0, 1]. So the random variable g in L
describing the first measurement is given by

m

s 7
§@) =tmy L i ey Gorme & @8
for each B. Here I is the characteristic function for
the set £ and Fi;/m, ji1/m), 0 =[8li/m = pOY<{j+1)/
m]. Note that if 0<8(0)< 1, g(8) = B(0) and that the
value of g(B) for 8(0) > 1 or < 0 is irrelevant since
such B are always in Rv — [0, 1]«.

Now T kg(B)[=pB(k) if 0 < B(k) < 1] is the random
variable describing the kth measurement. The limit
mean of the outcome sequence of an infinite repetition
of measurements of O, on a system in state p is
described in L by §{—). Equations (42)~(44) give27

.

—_ —_ . ] B

M) =g ()= 1lm, ZO st Pogp Flirm.Gerymdo
J:

1
= fo« Td(Tr(pé’?E)) = TrpO,, (45)
13% , almost everywhere.

From Egs. (41) and (45), one has the result that
M6y (—) = Trp0Ogz,P,, almost everywhere and
M) =g) = TrpOE,POEP almost everywhere.

Now the usual procedure in proofs of this type is to
conclude from this that

M9 gla) = TrpO, = M3, 46}

where @ and 8 are the sequences obtained by actually
carrying out the respective processes. We want to
stress that, in common with all comparisons belween
an empivical limit mean and an expectation value,this
step implies the assumption that a (scalar) measure
P assigned to a process is “correct” for the process.
That is, “all” properties (with “all” suitably de-
fined)21,28 of outcome sequences which are true P
almost everywhere, are true for the sequence obtained
by actually doing the process. For the cases consi-
dered here, one assumes that P, is “correct” for

an infinite repetition of ¢2 onp and POE o is “correct”
for an infinite repetition of measurements of O; on p.

The not so obvious aspect of such proofs is that the
assumption as well as the proper definition of
“correctness” is highly nontrivial. It is the central
concept of a definition of agreement between theory
and experiment discussed elsewhereZ1,28 and will be
discussed moie in future work. However, from here
on, the usual procedure will be followed of finishing
proois of this type without comment by assuming im-
plicitly that the given (scalar) measure is “correct”
for the process being considered.

This equivalence sheds new light on the meaning of
O . For it shows that by means of the O associated
with the process ¢4, questions about the statistical
properties of ¢#, which are usually formulated in the
probability sample space of infinite repetitions of the
process, can be reduced to (conceptually) simpler
questions about TrpO, and the spectrum of O for
each E € £% and each state p.

This reduction process appears more powerful for
infinite processes than for finite ones. For it allows
questions about “higher order” sequences,i.e., infi-
nite sequences of 6 step processes to be reduced to
questions about single infinite processes each of
which is an infinite repetition of measurements of
O, for some E. Thus this reduction appears to be a
powerful tool for it shows that considerations of
“first order processes” seem to be sufficient.

It might be objected that in order to set up this equi-
valence one had to consider infinite repetitions of 6
step processes which for § = w are impossible to
carry out. However, we now show that the equivalence
does not really depend on this by considering a lower,
or “first order” equivalence, in which a single carry-
ing out of ¢& suffices.

B. First Order Equivalence

Let g2 be a 6 step process and let 7':S% — Sé be a
=4 measurable transformation on 8¢ such that the set
transformation T'[Eq. (35)] induced by T preserves
set operations. Furthermore, we require that g% and
T be such that the limit mean probability operator
measure O° exists [Eq. (16)], where 7 is induced by
7' on 8(2%,B(X)) and O is the probability operator
measure associated with the proecess ¢2 by the con-
struction of Sec. IIl. Also the state p must be such
that for the probability measure P, constructed
from O and p according to Eq. (11}, the only 77 inva-
riant sets are ¢ and S¢,P,, almost surely.

Now suppose one considers carrying out ¢® on a sys-
tem in state p and wants to know what the limit rela-
tive frequency is for finding o, Ta, T2a, etc., in some
set E € =%, where o denotes a possible outcome
sequence. Clearly one way to find this out is to carry
out g2 on a system in state p only once. Then one
must go through the purely mathematical construction
of generating the sequence @, Ta, T2a, - - and then
construet the 0-1 sequence 8% & according to
(6Fa)(j) = 1(0) if Tia € E(Tia ¢E) for j = 0,1,--- .
Then M6 Za gives the desired limit relative frequency.

Again the interesting aspect of the probability opera~
tor measure O is that under the restrictions given,
this limit relative frequency can also be obtained by
repeating over and over a measurement of 0% onp.
As before, this equivalence is shown by means of
sample space constructions. For the first process,
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let I, be the characteristic function for the set

E €% where I, is defined on the sample space
(8¢,28,P,,). Let 7 be induced on the I ; by T’
according to 7/, = [, for each £ € Z5 and define
the limit mean random variable I by

_ n-1
Ty = lim, 1 Z i) a7
]:

Now since O7 exists, Eqgs. (11)-(16) give

n-1
P5TE = Trp0 = lim, = 230 T1p0 11,
]:

n-1
= lim, % EO Py, TIE=PTE
1=

exists for each E € 9. Thus by the pointwise ergodic
theorem and ergodic criterion,25 I (-) exists P, 0
almost everywhere. Since ¢ and S® are P, almost
surely the only T' invariant sets, the ergodic hypo-
theses holds, and thus, by the indecomposability
theorem,25

{)OP almost everywhere. Clearly by Eq. (47), 11719};'01 =
I} (o) for each o and E.

For the second process of repeating over and over
the measurement of 'O_; on p,the sample space con-
struction of Eqgs. (42)—-(45) can be taken over exactly
if one replaces O, everywhere by 6;. Equations
(42)~(45) then yield

M) —g) = Tro0y, (49)

P(—)gp almost everywhere.

As in the case of Eq. (46), Eqs. (48) and (49) give the
result that

Mola = TrpOL = M8, (50)
where o and B are the outcome sequences which would

actually be obtained from the respective two pro-
cesses.

V. DISCUSSION

There are some other properties of the association of
probability operator measures to process g2 which
are worth noting,

Possibly the most interesting property of these mea-
sures is that through the equivalences just discussed,
they provide an interesting link between purely mathe-
matical propevrties and physical operations. This
stems from the circumstance that to each set E e ¢
there corresponds a unique mathematical property @
of elements of S&, where £ = [¢|Q(¢) true],i.e., E is
the set of all elements ¢ of S¢ for which @(¢) is true
or which have property @.

To see this in more detail suppose an observer con-
templates carrying out the (finite or infinite) process
g2 on a system in state p and wants to know what the
probability is that the resulting outcome sequence has
the mathematical property €. Previous discussion
shows that the standard way to answer this is to
carry out an infinite sequence of repetitions of g4 on
p which gives a sequence « in (S%)¢. Now one must
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carry out an infinite sequence of decision procedures
about the mathematical property @. That is, one must
determine the {ruth or falseness of the mathematical
propositions @{a(0)), @ (1)), - - -. This generation

of the 0-1 sequence 6 (o) is a a purely mathemali-
cal procedure. The desired probability that the out-
come sequence has property € is then given by

M6, (a) where E = [¢] @(¢) true].

Now the discussion of the previous section has shown
that there is an entirely equivalent method of deter-
mining the probability that the outcome sequence ob-
tained from doing g2 on p has property . This is,
carry out the physical operation of repeatedly mea-
suring O}%A on p and determine M B where 8 is the
outcome sequence. By the previous section, Mp =
TrpOf~ where E = [¢]Q(¢) true].

Thus one sees that the purely mathematical operation
of “decide whether Q(a (0)), @(@ (1)}, - - - are true or
not” in effect, “disappears” into the operator 0*.
For the physical operation of “repeating” ¢ onp
over and over followed by the mathematical operation
of generating 6, for E = [¢ | Q(¢) true] is equivalent
to the physical operation of measuring O E‘IA on p over
and over again. Here equivalence means that M0 o =
MB = T!‘[JOE .

This reduction property appears even more dramati-
cally in the case of the “first order” equivalence.
For in this case, the physical operation of repeating
g% on p over and over is replaced by carrying out

g on p only once and then generating, as a mathema-
tical operation, the sequence a, Ta, T2a, ..., Ti,. .. .
Here the complete mathematical procedure of gener-
ating this sequence and then deciding for each j if
Q(Tia) is true or not “disappears” into the operator
OL where E = [¢]Q(¢) true]. That is, carrying out
q?2 on p only once followed by the mathematical pro-
ceduve outlined above is equivalent to the physical
opervation of measuring Og on p over and over infin-
itely many times.

Again this reduction property is an extension to
sequences of properties of operators in quantum
mechanics which, although well known, perhaps has
not been expressed in the same way as is done here.
For the case n = 1, let o be the outcome sequence
resulting from measuring ¢(0) = 2, g SPZ over
and over again on p. Then the mathemdtical decision
procedure whereby one answers—Is @{a (7)) true ?—
for each j where E = [s]| Q(s)true] C §, disappears
into the physical operation of measuring Op = 2, .,
pPg © on p over and over again. As noted before in
this ease, each O, commutes with ¢(0).

For the case of two self-adjoint operators 4 and B,a
somewhat different reduction holds. If one wants to
measure Trp(4 + B) by measuring A and B each on

p over and over again giving @ , and a 5, respectively,
then there is a mathematical operation which must

be performed. That is, one must either add Ma , to
Ma z or oy to 5. By the equivalence discussed in
the previous section, this addition operation disap-
pears into the physical operation of measuring A + B
on p over and over again,

This argument also applies to the operations of mul-
tiplication by real numbers and computing f(r) where
f is any Borel function of the real numbers. One way
to measure f(4) on a system in state p is to measure
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A on p over and over again and then compute f'o
[where (f'a)(j) = (f(a(4)) for each j| from the out-
come sequence «. The other way is to measure f(4)
on p over and over again giving the outcome sequence
B. Since Mf'a = Trpf(A) = M3 the mathematical
operation of computing f'«a disappears into the physi-
cal operation of measuring f(A) on p over and over
again.

Two examples will illustrate these properties of pro-
bability operator measures associated with compound
processes. As a simple example, let @ be the pro-
perty ¢(3) = s with s some fixed element of S;. That
is, Q(9) = ¢(38) =s. Set E = [¢ | Q(¢) true] =

[¢ | ¢(3) = s].

Now the probability that carrying out g2 on a system
in state p will yield an outcome sequence with pro-
perty @ can be obtained in two ways. The method of
repeating g4 on p over and over yields an infinite
sequence « € (§%v for which one must carry out the
mathematical decision procedures for “Is(a(0))(3) =
$?,”“Is(a(1)}(3) = s ?” ete.to obtam ;. The other
method consists of measuring 0‘1 on p over and
over again to obtain 8 €[0, 1]v, From previous con-
siderations one must have MBEa =MB=TrpOg".
The mathematical procedure used to construct 9 o
from a has “disappeared” into 095, 4(3)-s] -

This example transfers to the “first order” equiva-
lence case as follows. Let T:8% — §8 be 8 measur-
able. As examples of such T let the § step process ¢
be such that §; = = § independent of j for eachj< 6.
Then T can be induced by any bijection V:S — S by
(To)F) = V(¢ (j)) for each j. Or if 6§ = w, T can be
the one sided shift operator. For the first method one
carries out g2 on a system in state p only once and
generates the sequence o, Ta, T2a, . .- from the out-
come sequence & SO obtamed Then one obtains 9

by carrying out the mathematical decision procedures
for “Is @(3) = s?,”“Is (Ta)(38) = s ?,” etc. The equiva-
lent physical method consists in measurmg Oro | ¢ (=5
on p over and over, where O = 0°9% and 7 is induced
on 6(Z$B(3)) by T, Eq. (13). (We assume 07 exists.)
As before the mathematxcal procedure used to gene-
rate 6To from o has disappeared into O[4) 4(3)<s) -

As a second example, let f be some (definable)21,28
function from S$% to R and let @ be given by

Q) =F(9) = [55 F(OIP,,@h).

For the “higher order” equivalence case,one carries
out g2 on p over and over and thereby obtains the se-
quence « € (S%)w He then generates 6 & by answer-
ing “does f(agj f(6)P,,(d6)?” for each j
where O = 019 Th1ss mvolves a relatively complex
mathematical procedure as one must evaluate the
integral. The equ1va1ent physical operation is the
measurement of O () true) OR P OVer and over
again. For the f1rs¥ orcib r equivalence one carries
out ¢2 onp only once, which glves an o €8¢, and
generates OEoz by answering “does f (T7a) =
j s f(G)POp (d6)?” for each j. The equlvalent physical
operation is the measurement of OL@ 1 @(e) truel ON P
over and over again.

This example illustrates the possibility that the pro-
bability operator measure 092 and the state p can
occur in the defining relation for a set in £é. It will
be seen in future work that such relations must in

fact be considered. This property for scalar proba-
bility measures was used extensively elsewhere.28

These, and many other examples which can be con-
structed, illustrate some of the properties of this
equivalence, or embedding of mathematical proce-
dures into operators in B(3) by means of the proba-
bility operator measures 094 associated with pro-
cesses g4, It will be seen in future work that this
embedding is, in essence, the transferral of proper-
ties and procedures which are in the metaphysical
world, i.e., outside of quantum mechanics, into the
physical world, or into quantum mechanics, This
process is similar to the extension process used in
mathematical logic where a formal theory Tk can be
extended to a larger theory Th’, which can describe
some of the metamathematics of Th.

Finally some brief comments about the construction
of 092 from a & step process ¢4 are in order. It was
tacitly assumed here that the process g2 was such
that g(j + 1) and A(j + 1) were independent of the ob-
served outcome of measuring g(j)k for any & < j.
This assumption should be removed to allow decision
procedures where ¢(j + 1) and A(j + 1) can depend
on the outcomes already obtained.

Also the restriction of ¢(j) to be an operator with
discrete eigenvalues should be removed. This is
especially true if one wishes to consider processes
q whose range set includes any of the operators 0.
The generalization to statements more general than
that of Von Neumann's projection axiom should also
be made. This appears to be necessary since, as
Margenau has observed,17 there are measurement
processes for which the usual projection axiom is
false. The methods developed by Davies and Lewis?
appear to be relevant here.

It was tacitly assumed here that the transition from
step j to step 7 + 1 is a time translation only and
was represented by a unitary operator U(A, 10 A, )

As far as the discussion and constructlons g1ven in
this paper are concerned, neither of these restrictions
are necessary. A can include space—time transla-
tions, rotations, etc. Also it is sufficient for the deri-
vations and proofs given here that U(a;, a1, A;) be an
isometry only. It need not be unitary.

In conclusion, it should be noted that there is a con-
struction of a probability operator measure from the
process g2 which is dual to the construction given
here. To see this one notes that the constructions of
this paper begin with
t A
_ p98 pa
Oty = B¢, Po, (25)
for each ¢, and n. However there is also a dual con-
struction which begins with
At
iqsn} = Bd: Bq, ’
This construction cannot be considered the same as
that beginning with Eq. (25) as there is no reason to
assume that Bq, is a2 normal operator, or that OQ o, =
Oto,1-
In some respects, this dual construction for finite ¢4
is related to the original construction for the time

reversal of the proAcess g% . This can be seen from
the structure of B?n,, , Eq. (24), and the fact that the
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time reversal ¢4 7 of the process g2 is such that
q7(j) = {g{n — 7)), the time reversal of the operator
g(n— j),and A% = A, ;. But this is a subject for
future work.
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It is shown that occupation statistics for parallel dumbbells on a 2 x N lattice obeys the central limit theorem.
On the basis of this conclusion, a modification of the maximum term method is utilized to enumerate for large
N the number of distinguishable arrangements arising when indistinguishable, parallel dumbbellg are placed on
a 2 X ¥V array. The coverage at which the maximum number of arrangements occurs and the pseudovariance

for the distribution are also determined,

1. INTRODUCTION

The statistics which describe the occupation of lattice
spaces by correlated particles such as dumbbells is
unique in three ways:

{1) The occupation of a lattice site insures the occu-
pation of a nearest neighbor site, thus particle
orientation must be considered;

(2) the vacancy of a lattice site cannot serve as the
sole criterion for a site to be occupied because
of the possible existence of isolated vacancies;

(3) there is no equivalence between vacant sites and
occupied sites but rather between vacancies and
pairs of occupied sites.

otoloto] ool 1]
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FIG.1. An arrangement of 7 dumbbells on a
2 x 13 lattice,
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It follows, therefore, that statistical mechanical
treatments of physico-chemical systems which may
be represented by dumbbells on a lattice space en-
counter a number of fundamental difficulties. Fore-
most among these problems is the manner in which
the orientational degeneracy of the particles on the
lattice space complicates the determination of the
grand canonical partition function. To resolve this
difficulty, one must be able to calculate the degene-
racy of a state represented by a specified number of
dumbbells on a lattice space. One is lead to inquire,
therefore, into the number of possible ways in which
dumbbells may be arranged on a lattice space.}

In previous papers we have discussed the statistics?
and kinetics3-4 of occupation of one~dimensional
arrays of dumbbells and an occupation recursion re-
lation for a 2 X N lattice.5

Section II is concerned with demonstrating that the
statistics of occupation for parallel dumbbells on a
2 X N lattice (see Fig.1) conforms to the central
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time reversal ¢4 7 of the process g2 is such that
q7(j) = {g{n — 7)), the time reversal of the operator
g(n— j),and A% = A, ;. But this is a subject for
future work.
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It is shown that occupation statistics for parallel dumbbells on a 2 x N lattice obeys the central limit theorem.
On the basis of this conclusion, a modification of the maximum term method is utilized to enumerate for large
N the number of distinguishable arrangements arising when indistinguishable, parallel dumbbellg are placed on
a 2 X ¥V array. The coverage at which the maximum number of arrangements occurs and the pseudovariance

for the distribution are also determined,

1. INTRODUCTION

The statistics which describe the occupation of lattice
spaces by correlated particles such as dumbbells is
unique in three ways:

{1) The occupation of a lattice site insures the occu-
pation of a nearest neighbor site, thus particle
orientation must be considered;

(2) the vacancy of a lattice site cannot serve as the
sole criterion for a site to be occupied because
of the possible existence of isolated vacancies;

(3) there is no equivalence between vacant sites and
occupied sites but rather between vacancies and
pairs of occupied sites.

otoloto] ool 1]

EANNECONNE DN

FIG.1. An arrangement of 7 dumbbells on a
2 x 13 lattice,
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It follows, therefore, that statistical mechanical
treatments of physico-chemical systems which may
be represented by dumbbells on a lattice space en-
counter a number of fundamental difficulties. Fore-
most among these problems is the manner in which
the orientational degeneracy of the particles on the
lattice space complicates the determination of the
grand canonical partition function. To resolve this
difficulty, one must be able to calculate the degene-
racy of a state represented by a specified number of
dumbbells on a lattice space. One is lead to inquire,
therefore, into the number of possible ways in which
dumbbells may be arranged on a lattice space.}

In previous papers we have discussed the statistics?
and kinetics3-4 of occupation of one~dimensional
arrays of dumbbells and an occupation recursion re-
lation for a 2 X N lattice.5

Section II is concerned with demonstrating that the
statistics of occupation for parallel dumbbells on a
2 X N lattice (see Fig.1) conforms to the central
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limit theorem. Expressions are developed for A,[q,
2 x N],the number of ways g parallel, indistinguish-
able dumbbells can be arranged on a 2 X N lattice.

It follows from such expressions, that for large N

the occupation statistics of dumbbells can be descri~
bed by a Gaussian distribution characterized by a
first moment and a pseudo variance. This latter sub-
ject is discussed in Sec.III,

IO. CENTRAL LIMIT THEOREM FOR PARALLEL
DUMBBELLS ON A 2 X N LATTICE

In this Section we will show that for large values of
N, all significant values of 4,[¢,2 X N] oceur at
values of ¢ which differ only negligibly from the pro-
duct of N and the first moment of A,. Specifically,we
will define 6 = ¢/N,0 < 6 < 1 to be the fraction occu-
pied lattice sites and we will demonstrate that the
normalized fractions of all arrangements occurring
in the range between 6 and 6 + d6 are insignificant
for all values of § except where § = p’(1), the first
moment of A [N6,2 X NJ.

We begin by defining A, ,the normalization and w,, (m),
the mth noncentral moment of A {q,2 x NI,

qu:;OAP[q, 2 X N] @

and

1 [ee]
py(m = o= 7, X
N AN 70 qup[Q72 N]' (2)
Clearly u,(0) = 1 and p, (m) may be considered to be
the mth noncentral moment of the nonnegative, nor-

malized function
Afq,2 x N /ay,where 0= A[q,2 X N]/ay = 1. (3)

In Appendix A we show that a recursion relation for
A,[g,2 x N] may be written in the form

Ap[qasz] E EC;] p[ —Z),ZX(N-—])], (4)
where the C . are constants independent of ¢ and N;
and A,[q, N] =0 if ¢ > N. We may thus write
uy(m) as

1 RS
py(m = — C..qmA ~3),2 x (N—7]. (5

It will prove convenient to change variables at this
point: Z = g — i. Equation (5) then becomes

il =2~ 2 %3 c, 2+ dmafz,2 x o )]
Ay Zzo iZo j=
1 (=] [~} o0 m
—_ = C. (mYjm~kZ kA
By zl?o 1Z=>0]'E‘-‘lk§0 y(FHT 2,
x [Z,ZX(N-—])]
1 [+] oo M
— C..(m)imk
By gqukzgo i (D IR Ay
w zkA,[Z,2 X (N —j)]
x 23
Z=0 AN_].
o0 00 o0 A
=Z L L Gy im0 (8)

We next examine the quant1ty Ay

/AN. It is shown in
Appendix B that

&y = Kuzn+2 )

for large N, where K and ., the golden proportion,are
constants. Inserting this result in Eq. (6) yields

o0 o0 o0

2oL Gy

i=0 71 k0
We now write Ap as a function of 6, the fraction of
occupied lattice sites,i.e.,

py (m) = imky ~2ipy (k). (8)

Alq,2 xN]J/Ay, = A[N6,2 X N]/Ay. (9)

As N increases, this ratio must become independent
Nbecause A, and A, = Ky, 22 are monotonically
increasing and the ratio is bounded [see Eq. (3)]. Thus
we may write

i A,[Ng,2 % N] i

i, g ——=100). (10)
Equation 2 then becomes

2 XN

py () = E _P_[_____.__]_

0 X N
—NmY) BmAp[Ii"’z ]
g=0 N

1
= Nm T gm£(6) = Nmtom), (13)

where p/(m) is independent of N,
Utilizing Eq.(11) in Eq.(8) yields

«© o0 m

WmNm =323 C

7 ik, 25 )N — 58
#0 F14=0

590> Z; C, ) im=hu, 2 ()P (— DINF-L,
=0 71 &0 | (

12)

We note here that when! = 0 and 2 = m, we obtain

Z‘/ Z Cu32 w/(m)Nm™ = p (m)Nm (13)
=0 j= i

or
> % Gy = 1. (14)
=0 j=1

The only dependence of the right-hand side of Eq.(12)
on N is contained in the factor N*!;therefore,all the
coefficients of N*! must sum to zero for 2 — [ =m;

ww o m k
=2 L n L C pime "u'zm @H (- )
i=0 j=1k=01!=0 (15)

for all values of k — [ # m.

To determine the properties of y’ let us examine the
coefficient of N»~1 i.e.,k —~ I =m — 1. This means
that either ® = m and! = lorthatk=m — land! = 0:

o]
-2 Z) C;; 32 w(m)mj

i=0 j=1
o0 o0
+ 7 EC,_,H 2j w (m— ymi
=0 j=1
or
o0 o0
= 2325 Gy ug2~ju (m) +iplm— 1)), (16)
=0 j=1
so that
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. 00 [>o]
27 G upi
=0 j=1
pm) = p'm — 1) (1n
o0 [=¢)
22 C”ungj
L0 j=1
=k 'J"(m— 1),
where
o0 0
EZ C;‘jﬂ-_zn
=0 j=1 g .
R=oo is
227 Cyu2ij
0 j=1
a constant.
Thus
plm) = km (18)
because
p(0) =1,

If we use the C determined in Appendix A, we see
that

W)=k =(1—1N5). (19)

For a function whose noncentral moments obey Eq. 18
we have

0=y (1)’
6> u'(1), (20)

f(9) =1 for
f{(8) =0 for

and so, for large N the only significant terms in the

sum
1

2 AN9,2 X N] (21)
6-0

occur when 6 does not deviate significantly from
¢’(1). Thus the statistics obeys the central limit
theorem.

II. ENUMERATION OF DISTINGUISHABLE
ARRANGEMENTS OF PARALLEL DUMBBELLS
ON A 2 X N LATTICE

It has been shown? that A[g,1 x N]|,the number of
distinguishable arrangements possible when ¢ indis~
tinguishable dumbbells are placed on a one-dimen-
sional array of N compartments, is given by (see
Fig. 2)

Alg,1 xN] =(¥39) (22)

when the occupation of a compartment precludes
further occupation (a Fermi-Dirac constraint).

Equation (22) arises from the following reasoning. In
this situation, there are N-2¢ vacancies and ¢ dumb-
bells or a total of N~2¢+ g = N-q objects. Afg,1 X N]

[teleofel [ 1 [efe] Tefe] |
L] [ [ode] [egofefe] |
[Todel [ofe] [I Tefe[ofe]

FIG.2. All of the arrangements of 2 dumbbells
on a one dimensional lattice 6 sites long.
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is then the number of arrangements of N-g objects of
which N-2g are vacancies and ¢ are dumbbells.

Thus if parallel dumbbells are placed ona 2 X N

array (see Fig.1) in such a way that there are ny

dumbbells in the top row and n, in the bottom, then
(nl,nz, 2 x N) the number of arrangements pos51ble

is
alny,n,,2 X N) = <N‘”1> <N — "2 (23)
"y (s
To determine A [g, 2 X N], Eq.(23) must be summed

over all possible values of #; and », subject to the
constraint that

nl + n2 =4,
i.e.,

Alg,2xNl= T <N ZI"I> (N;fz). (24)

?11,712
Two cases must be considered in evaluating this sum

@) 0=g= [N/2], (25)
(b) [N/2]=q=2[N/2], (26)

where [N/2] is the maximum integer contained in N/2.

Here (a) represents the case in which all the dumb-
bells can be placed on one row and (b) the situation
when they cannot.

For (a), Eq. (24) becomes

Alq,2 x N] = i <N - n1> <N—q + n1> @)

m=0 ny q—ny
and, for (b), Eq. (24) is
[N/2] N N
Algq,2xNl= 2 < "”1>< —aq g
b n,=g-[n/2] ", q—n (28)

However,we may add to Eq. (28)

-/21-1
q- /2] N —n, N——q+”1
) m YU 20,

ny=
4

0z (N;"l)(
 =N/2)41 1

because both these sums are zero for [N/2] = ¢ <
[N/2]. Thus for both cases we may write

—q+n
q—n

q
N—-n{\/{N—q+n
siorsis £, (72
ol ! n?o "y g
q
:an"" (30)
1
where
= (N—n)\(N—q +n
an‘_< 7y )( a—n /- (31)

To evaluate Eq.(30) we determine the maximum term

and perform a Taylor expansion of lna, about the
. . . i3

maximum, keeping the first three terms only:

Ing, = In(N —n,)! — Inny! — In(N — 22,)!

+ ln(N — g +ny)! — In(g — ny)!
— In(N — 29 + 2n,)! (32)
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Utilizing the Stirling approximation, we may write
Eq.(32) as
Inag, =—1n27+ (N —n, + 3) In(N —n,)
—(ny + 3) Inlry) — OV — 22, + 3) In(N — 21n,)
+(N—q+n +3) InlN—gq+n)
~(g—n,+ 3 Inlg—n)— N — 29 + 21 + 3)

xIn(N — 2¢ + 2n,). (33)
Then
gy, <(q — )N — 2ny)2(N — g + n1>>
ony n (N — 2¢ + 2n,)2(N —ny)

+ 3[— (N =n)t— ()t + 20N — 2ny)?

+ (N =g +n)t+ (g—ny)?

—2(N—2g+ 2n), (34)

which vanishes for
nt=4q/2,

i.e.,the maximum number of arrangements occurs
when the dumbbells are evenly distributed between
the top and bottom rows. Thus 0:1 ,the maximum
value of anl,is given by

ot — <N - q/2>2 |

n q/2 (35)

The third term in the Taylor expansion of a, is then

2 -
y 9%Ima,N L<23N2q(N — g)(@N — g) — 2IN(N — q)® — 22 2(2N — q)2> _ 9 (36)
o an2 w2 q%(N — q)2(2N — ¢)? 2!
]
Thus, from Eqgs. (35) and (36), Let 2n, — ¢ = 2m, then Eq. (39) becomes
[ny —(q/2)]? / /
Ing, =lna} — ——1-—-—2——‘ (37) N o2 — m?2
) 1 2102 Ag,2xNl=a¥ 2. expi—
or [ /9] 1 m=-gq/2 216%
ny — (q/2) 2> 2
a =a* expl— ————]. (38) - - X
moom < 2103 =ay, [ o 2107 X
Substituting Eq. (38) in Eq. (30) yields _ a;.;1 V37 oy, (40)
A — [n, — (¢/2)]2 where
Afq,2 xN]=a} 2 exp(—————-— (39)
m=0 210%
L g2V — %N ~ g)?
o1 :< 2 3 2 2]’ (41)
8N2g(N — q) (2N — q) — 16N(N — ¢)3 — 4¢2(2N — q)
For 0 << ¢ << N, Eq. (41) reduces to —2(g/2+ 3)In(g/2) — 2(N — g + 3) In[N — ¢)
02 = g(N — q)(2N — q) (42) + Ino; + 3 In(2m) (44)
e 8N2 ‘

Figure 3 shows Ap(calc)/Ap(true) for various values
of N,where Ap(true) is determined from Eq. (24) and
Ap(calc) from Eq. (40). Equation (42) has been utilized
to calculate o,2.

For the purposes of some calculations it may be suf-
ficient to represent Ap[q, 2 X N] as a Gaussian dis-
tribution characterized by a mean value and a pseudo
variance. To do so we must first determine the value
of ¢ which maximizes Ap[q, 2 X NJ:

InA,[q,2 X N] = Ina} + Ino, + 1n(27)
=2 In[N —¢/2]! — 2 In[g/2]! — 2 In[N — q]!

+ Ino; + 31n(27). (43)

Using the Stirling approximation for 0 <<g<<N, Eq.
(43) may be written as

InA,lg,2 X Nl = 2(N — g/2 + 3) In(N — ¢/2)

Because a’,*,1 varies much more rapidly with ¢ than

N=I00
.00

095—

Ap{CALC)
Ap(TRUE)

0.90—

I ] T T T
0 0.2 0.4 [¢X°] o8 10

e

FIG.3. The ratio Ap(calc)/Ap(tme) as a function of ¢ for
various values of N, where A (calc) is determined from
Eq. (40) and (42) and A ,(true) is determined from Eq. (30).
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does o, we shall neglect the derivatives of 0, with
respect to g. Thus

9 InA,[q,2 X N]
aq

= — In(2N— ¢) — In(g) + 2 In(N — q)

AN — g2
+1n4 = ln(q—(ZT-%LqD . (45)

This will vanish when
6* = (g/N) ={1— 1A5} = 0.552, (46)

Thus the most probable value of A [q,2 X N],i.e.,the
maximum value of the number of arrangements,
occurs when the coverage is approximately 55%, in
agreement with Eq.(19). In other words, as one would
expect, the first moment is the same as the most
probable value or maximum value of 4 [q,2 X N].

With this result we may for large N perform a Taylor
expansion of InA lqg,2 x N]_about its maximum value,
i.e.,about ¢* = N(1 — 1/5),

5 A% 1 02 lnAp 2
X = 4 = —— —
InA,fg,2 %N = ma ) e 10 2
or (see Fig.4)
p 2N+2 [—(q —q*)z]
Alg,2 xN) = 25— 48
Jla )= e =g (49

where from the evaluation of the derivative of Eq.(45)
at ¢* we see that
2= 2N

G E .
We note here also that the standard deviation for
simple particles on the same 2 X N lattice space
would be 3(2N)1/2 j e., the standard deviation for
dumbbells is approximately 60% of that for simple
particles. The ratio of the standard deviation to the
most probable value for dumbbells is approximately
1 of that for simple particles. Thus the Gaussian
distribution for dumbbells, as indicated by Eq.(48), is
sharper than that of the Gaussian distribution for
simple particles.

(a pseudovariance). (49)

44
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o
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[2]
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e

FIG.4. A comparison of the number of
arrangements vs. § as calculated by Eq. (30)
(true) and Eq. (48) (calculated) for N = 100.
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APPENDIX A

In this appendix we seek to determine a recursion
relation for A,[q,2 X N]. For this purpose we define
two configurafions of lattice sites L,(N) and L, (N),
(see Fig.Al). L{N) is an array of lattice sites
arranged in two adjacent aligned rows of N sites
each. L |(N) is an array composed of sites arranged
in two adjacent aligned rows; one row of N sites and
the other row of N + 1 sites. Let A [g,2 X N] be the
number of arrangements of ¢ paralfel indistinguish-
able dumbbells on L(N) and B[g, 2 X N] be the num-
ber of arrangements of ¢ indistinguishable parallel
dumbells on L,(N).

Theovem I:

Blg,2 x N] =A,[9,2 XN]+ Blg— 1,2 x (N = 1)].
(A1)
Proof: Let blq,2 X N] be the set of all parallel
arrangements of ¢ indistinguishable dumbbells on a

Ly;; lattice,c[g,2 X N],the subset of b[g,2 X N] in
which the extra compartment is vacant,and d|q, 2

X N]in which the extra compartment is filled.
Clearly c[q,2 X N]n d[q,2 X N] = ¢,2 null set. In
addition every member of b[g,2 X N] will be found in
either c[q,2 x N] or d[q,2 X N],i.e.,c[q,2 X N] U
d[g,2 x N]. We conclude that #b[g,2 X N],the num-
ber of members of the set b{g,2 X N] is given by

#b[q,2 x N] =4#c[q,2 x N) + #d[a,2 x N]
= Blg, 2 x N]. (A2)

The extra compartment of the L ; (N) array isunoccu-
pied in the set ¢[q, 2 X N] so that #c[q,2 X N] = A [q,
2 X N]. If the extra compartment is occupied, then
the adjacent compartment in the same row is also
occupied. Hence all other possible arrangements
must involve the remaining g — 1 dumbbells on the
remainder of the array which is a L;; (N — 1) array.
The number of elements in d[g,2 X N] is therefore
Blg — 1,2 x (N — 1)]. Theorem 1 follows from Eq.
(A2).

Theovem II:
Alg,2 xN1=4,q,2 x (N — 1)]

+ 2B[g— 1,2 x (N — 2)]
+Ag—2,2 x (V- 2)). (A3)

Proof: Let a[g,2 X N] be the set of all possible
arrangements on a L,(N ) array and let e,[q,2 X NJ,

il

FIG.Al. An L (N)array and an L;;(N)
array.

LN
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e,[q,2 X N,...,e,lq,2 x N] be the subsets of alg,

2 % N} in which the end two lattice sites are occupied

in a manner shown in Fig, A2. Since every member

ek{q, 2 x N] differs from any and every member of

e;lq,2 X N),k = j,we state that ¢[q,2 X N] N ¢,[q,2

>ZN] =¢,k # j. In addition, these four configurations

are clearly complete in that they completely describe

the occupation of the two end lattice sites
§ e,lq,2 x N=alg,2 x N]. (Ad)
R=1

We conclude that

#alq,2 X N] = #e,(q,2 X N] + #ey{q,2 X N|

+ #e3[q,2 X N] + #e,lq,2 X N] = Ap[q,2 X NJ.
(A5)

The set e,{q, 2 x N] contains only those arrangements
in which the end sites are unoccupied. All g dumb-
bells are then arranged on a LI(N — 1) array. Both
sets e,[q,2 X N] and e,(q,2 X N] have one site empty
and one filled. This implies that one adjacent com-~
partment in the same row is also occupied. In each
of these sets,the remaining ¢ — 1 dumbbells are
arranged on a L;; (N — 2) array. In the set e,[q,2 X
NJ],two dumbbells occupy the end two sites. Then the
remaining ¢ — 2 dumbbells are arranged on a LN —
2) array. Application of Eq. (A5) yields Theorem II.

If Eq. (A3) is solved for Blg — 1,2 X (N— 2)],
—~Ag,2x (N -1} -Alg—-2,2x N -2,

so that by reindexing ¢ and N we may also write

(A8)

2B[q,2 ><N]=Ap[q +1,2x (N + 2)]
—Ap[q +1,2 X (N + 1)]—Ap[q— 1,2 x N] (A7)

and these values for the B can be substituted in Eq.

(A1). If the result is then reindexed in ¢ and N, we

obtain

Alg,2x Nl=AJg,2 x N~} +Alg—1,2
X~ D]+ A4,0g—1,2x (V= 2)] + 4,[¢— 2,2

X (N - 2)] —Ap[q - 3,2 X (N - 3)]. (A8)
Thus
) .
:
- Lr(N=D &médmn
I3
24 % &
‘ Nz
‘ Ly(N-2) '
L :
{ { 5% "
LN-2)

FI1G. A2. An illustration de~
fining the subsets e,,e,,¢5,
and e, in terms of the occupa-
tion of the Nth column,

Coo=0, Ciu=1, Cp0=0, C3y=0,
Cor=1, Gga=1, €5 =0, C3 =0,
Caz=1, C3,=0,
Caq=—1
APPENDIX B

In this appendix we show that

Ay =Kp2n2, (B1)

where K and p are constants.

To accomplish this we imagine that the 2 X N lattice
is rearranged into a 1 X 2N lattice. A[g,1 x 2N],the
number of arrangements of a ¢ dumbbells on the
1 X 2N lattice, minus X{g,1 X 2N), the number of
arrangements in which a dumbbell occupies the N and
N + 1 lattice sites is equal to A [g,2 X N}, i.e,,
Alg,2 x N1 =A[g,1 x 2N]1— X(q,1 X 2N). (B2)
As N becomes large, the sum of Eq. (B2) over all
possible values of ¢ may be written as

2(v/2) 93]
Afg,2x N =T Alg,1%N] (83)
g=0 =0

because the sum of X over g will be insignificant,i.e.,
the sum of all arrangements in which the N and N + 1
lattice sites are occupied will be negligible when
compared to the sum of all possible arrangements
for all possible g. Then

im 2 Alg,2 xN]~25Alg,1 x 2N). (B4)
q 4q
We have shown previously5 that
Alg,1 x V) =<2Nq" q). (B5)
Thus
(Nl oN
2 Alg,1 x 2N]=Z)< >=f2N+1, (B6)
q g=0 q
where f, is the Rth Fibonacci number. Because
f B —]; 1 +w/-5— 2N+2_ _1_‘/§>2N+2$ (B7)
2N+1 — ﬁ 2 p) ’
we may write for large N,
IN] N
— Q\= K, 2N+2
E < q >—Ku£’N+ ’ (B8)

=0
where K = 15 and p,, the golden proportion is given
by b, = (1 +v5).
Thus for large N,
[¥N]

AIvl = E Ap[qyz X N] = K,‘J%AHZ'
g0

We can also determine p, in terms of the C;; in our
recursion relation [Eqs.(3) and (A8)]

Kigne2 =3,

(B9)

CijAp[q - 1"92 X (N_])]

o0 0
=2 2 C,; K ugw-p-2
i=0 j=1
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Via the results of a previous paper on an algebraic realization of spin-wave theory [J.Math, Phys. 12, 2144
(1971)], the Hamiltonian of the Heisenberg model of ferromagnetism is regrouped into 2 main part and a pertur-
bed part. By introducing a generalized Bethe~Salpeter equation it is shown that the main part can be diagonaliz-

ed by the single-particle states.two-particle states,and two-particle bound states. To study the scatterings of

the perturbed part, an equation for the amplitude of the two-particle scattering states is derived. At low temp-
eratures this equation is solved by power series expansion. The modification of thermodynamic free energy
and spontaneous magnetization due to perturbation is equal to the first Born approximation multiplied by a

function @ (S).

1. INTRODUCTION

In a recent paper, the spin wave theory has been

studied on the basis of an algebraic realization of

spin operators.l The Hamiltonian under consideration

is the Heisenberg model of ferromagnetism,
T=—HD S° =T 4,578, (1.1)

1 1Lm
where S, is the spin operator of the atom at the /th
site, satisfying the algebraic relations

aa +
(8,891 = 25,8 9,18, 8P =25, 5. (1.2)

The spin operators can be realized in the form

S, =%%c%,, (1.3)

with
+ &
o=(8)
! bl + gb
where ¢ is the Pauli matrix. Both &; and §, are arbi-
trary c-numbers while g, and b, are boson operators
that commute with each other, In particular, we

choose £Z = 2 S and § = 0. The Fourier transform
for B, and b, is

Be = ANEZ eitkp,,
b, = (1/VN) T eil kb,
1

(1.4)

(1.5)

We note (cf.Ref. 1) that the g particles are “spurions”
which carry only spin quantum number without exci-
tation energy. The dynamic properties of spin wave
are essentially due to the b particles which are the
observed spin waves, i.e., magnons. Therefore, it
suffices to write down the effective Hamiltonian in
place of Eq. (1.1):

¥ =E, + Z} {0 + 28[J(0) — J&)]} b}b, — (1/2N)
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x kl'k§ks»k4 [70ey —k3) + Ty —ky)]b}, 0% b, b,
x ok, +k, —k; —k,), (1.6)
where
Ey =~ NS2J(0) — NSH (1.7
and
(1.8)

J(k)=J25 ei®1,
1

The Hamiltonian of Eq. (1. 6) is obtainable from that
of Holstein and Primakoff by putting?

(1 —btb,/25)1/2 = 1 1.9)
and keeping the interaction term
(afa)(a}a,). (1.10)

Since Eq. (1. 10) yields the two-particle bound states,
it plays an essential role, In the limiting case of long
wavelengths, calculations show that the two-particle
bound states are no less important than the single-
particle states.! Recently, bound states have been
observed in far infrared measurements.3 Elabora-
tions are focused on anisotropic effect.4:5 However,
our approach is easily extended to include such an
effect,

The existence of the bound states make Born approxi-
mation inapplicable. For this reason we regroup the
Hamiltonian of Eq. (1. 6) in the following way:

X =350 + 3y, (1.11)
where
3, = Ey +25{H + 28[J(0) — J&)}} b3 b, —[J(Q)/N]
k
x 2 b},b%, be be, 008 + Ky —Kg — k)
kyky ok gok, (1.12)
and
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&y = (1/2N) X J (ky —kz)

KKk k

~J (kg — k)05 0 by B, 50y + K —

[27(0) —

k, —k,).
(1.13)

By introducing a generalized Bethe—Salpeter equation
we shall show that the Hamiltonian given in Eq. (1.12)
can be diagonalized by single-particle states, two-
particle states, and two-particle bound states. Accor-
dingly, we can treat 3¢, as the main part and ¥,; as
the perturbed part.

Finally, the modification of thermodynamic free
energy and spontaneous magnetization is calculated,
To accomplish this, an equation for the amplitude of
two-particle scattering states is derived. The in-
homogeneous part gives the first Born approximation.
At low temperature the equation is solved by power
expansion. The result shows that the correction is
equal to the first Born approximation multiplied by a
function @Q(S).

2. THE BETHE-SALPETER EQUATION

Consider J; as the main part. The equation of motion
is given by

(H + 25[J(0) — J®&)] + :— %)b

=2J(0)/N 25 b} b b, o6k +k; —k, —ky)
kpkoeky
(2 1)

where

J0) — J &) =Zl) 2 [ 1/@2nt)ke1)2,  (2.2)
Define the Fourier transform

¥(x, 1) = (1/VN) EAUL (2.3)
therefore,

(W, t), ¥+, t)] = 6(x — x')
and

[V, t), ¥(x’, )] = 0. (2.4)
The equation of motion, in terms of Y(x, ¢), is
(H AW) + 7 aa) Y(x) = 2ON AW (x),  (2.5)
where

AW) = zszl) 2 [1/(2n)]a-v)2», (2.6)

We note that the operator A(V) introduced here is to
generalize the field equation.6

The following calculation is parallel to the method
used in Ref, 1, Define first the Bethe—Salpeter wave
function:

XkEO((xl’ xz)—<0|T(ll/(x1 xz))lk E,a), (2.7)
where T (xy)(W(x,)) is the time-ordered product of

Y (x;) and t}/(xz) Using the equation of motion and the
commutation relations of ¢, one finds

<H_ AV * 5 5;)(1‘1~ MV, + - a—at—z

)XkEa(xls Xz)

= 12 J(O)G(tl e tz)ﬁ(xl - x2)XkEa (xl, xz). (2. 8)

Now, we introduce the propagator function
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Sg (x1 - xz) = (0|T(l//(x1)¢+(x2))| 0). (2.9)
S satisfies the equation
1 3
<H—A(V1)+2. 37 )S (%, — x5)
— i5(t; — 1,)0(x; —X5).  (2.10)

Using Sp(x) to integrate Eq. (2. 8), we obtain the Bethe-
Salpeter integral equation

XkEo (%15 %3) = Xgge (%1, %5) — 12J(0)
X 2 fdty SF(xl _y)XkEa(y;y)SF (xz —3)
y

where the inhomogeneous term xgz, (x4, x,) satisfies
the source-free equation,

(2.11)

By taking x; = x,,Eq. (2.11) can be written

Xeza (%) = Xiga (5 9 = 2 Jdl, V(e = 9)x50,60,9)
(2.12)
where the kernel V(x) is defined by
Vi) = i2J(0)S 5 (x)Sp (%), (2.13)
Since
i dE 1 s ED
Sp(x) = N %} Tl eikex-ED (2, 14)
with
E, = H + 25[J(0) — J k)], (2.15)
we obtain
v = = O & v, Byeisex-, (2.16)
k
where
_ 4J(0) 1
V&, E) = . (2,17
CB =N ST T By &7

Define the two-particle states by

Xkeol% %) = Xo P, ) exp{i[(@ + @)*x — (E, + E))]}

2.1
with (2.18)
p ta=k. (2.19)
Subsititution of Eq. (2. 18) into Eq. (2. 11) gives
X0, @) =[1+V@+q,E, + E)]? (2.20)
where |
J(0
V(p+q,E +E) NSJL’
1
X 1 ’ 1 .
2 cos[3 ( + q)-/]{cos(k’+1)—cos[} (p — q)+ 1]}
(2.21)

The left-hand side of Eq. (2. 21) depends on (p + q)
while the right-hand side depends on (p, — ¢,)2" i =
%,¥,2 and # > 0. Hence, there are only two possibili-
ties:
@)p= ,j =29,z
(@)p=aq.

Case (i) leads to an inconsistency. The reason is

ip and q=jqg i#j,

(2. 22)
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parallel to the arguments presented in Ref,1. On the
other hand, case (ii) yields

XkEcx(x’ x) = Xo (k) exp[ ifkex — €t )] (2.23)
with

€, =2E,,. (2.24)
The representation of x (k) is given in the Appendix
A7

We now define the two-particle bound state
XBkwa (% %) = X5,,&) exp[ilkx — w,t)].  (2.25)

Substitution of Eq. (2. 25) into the homogeneous Bethe~
Salpeter equation yields

Vik, w,) =—1. (2.26)
Define
M = 2H + 45[J(0) — J(3K)] ~ w,; (2. 27)
then Eq. (2. 26) turns out to be
4700) 5> 1 -1
N G M +8SJY; cos(k-1) sin2(iq-1)
1 {2.28)

At low temperature, ke << 1, the integrand is inde-
pendent of the total momentum k., We note that Egs.
(2. 27) and (2. 28) agree with the results obtained in
Ref. 1 if only the leading terms are considered. M
can be interpreted as the binding energy of the bound
state.

By restricting ourselves only to two-particle pro-
cesses, the Hamiltonian of Eq, (1. 12) takes the form

¥, = E, + E} E,btb, + 22 €xCte, + %,‘ w, BLB,, (2.29)

where c, and ¢}, are the annihilation and creation
operators of the two-particle states while B, and B}
are the annihilation and creation operators of the
two-particle bound states, The present calculations
can be generalized to include the anisotropic effects,
These are presented in the Appendix B.

When we evaluate the thermodynamic free energy
from the Hamiltonian of Eq. (2. 29), we have to bear
in mind that at low temperature the number of exci-
tations, i.e., spin waves, are very small compared
with N.1 The ground states are characterized by the
“condensation” of g particles while the observed
spin waves are b particles. Therefore, we neglect
the effect of binding energy in the calculation of
thermodynamic free energy.

In the case of simple cubic lattices with nearest-
neighbor exchange interactions, the free energy can
be expressed as an expression:

F = Ey — Ng{[2;/,(BH) + 25/2Z,, (28 H))9 3/2
+ 3 1 Z,,5(BH) + 23/2Z, ), (28 H)65/2

X + 3 72[Zy,,(BH) + 2Y/2Z, ), (28 H)|07/2 4 ---}
(2. 30)

{2.31)
and
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6 = [§apSI(O)]L. (2.32)

The spontaneous magnetization is therefore given by

M= N{S — (1 +27/2)¢(3) 63/2 — 31 (1 + 25/2)¢ (£)g5/2
—5 m2 (1 +232)¢(1)97/2 + ...}, (2.33)

bl

where {(n) = Z,(0).

3. THE SCATTERINGS

To investigate two-particle scattering states, it suf-
fices to consider J;; as the interaction part and %, .
as the noninteraction part, which is given by

X, = };, E, b}e,. 3.1)
In the following, we use the conventional method of

perturbation. The two-particle states satisfy the
familiar equation

_ 1
W) =~ e ) °0.9)
where € = 0+ and [¢(p,q)) = b;b;lO}.
Now, we write | (p, q)) in the form
We,a) = L vo gk k)b 0] 10)  (3.3)
With 152
v, gk k) = ¥, q;k,, k). (3.4)

Hence Eq. (3. 2) becomes
{%, + 3%y — E,— E, + ic} lyp,q) =iel ¢, q).

(3.5)
By substituting Eq. (3. 3) into Eq. (3. 5), one finds
v, ¢k, ky)
=[6( —Kk,)o(q —ky) + 0 (0 —k;)0(q —ky)]
_ 2 J(0) — JK)
N YE, FE, —E—E +i
x¥p,q;k; +k;, —k). (3.6)

Equation (3. 6) may be solved by iteration, But it is
necessary since we are interested only in finding the
correction of the thermodynamic free energy which
is given by38

AF = (1/2N) pZ‘a<np><1g>A(p, q), 3.7
where
. (ny = 1/{exp[ (B E,)}— 1]} (3.8)
anmn
Alp,q) = N{¢(p,q)| Xy, |v(p,q)) . (3.9)
Define ,
f@,qky,ky) = E) [J(0) — JE&) W (p, q;k; + Kk, Kk, —K).
(3.10)

Therefore, Eq. (3. 6) becomes
2
e gp,) =IO -Je-] -5 2

J(0) — Jk)
- ;P +k,q—Kk).
N Eq—k'_Ep —E T ie Fp,q;p ’q(3, 11))

X

E,
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It follows from Egs. (3. 3), (3. 5), and (3. 9) that

. Ab,9) =4/, 9;p,9), (3.12)
i.e.,

Alp,q) = 2[J(0)—J (@ —q)}

where .

K(p, g k) = J(0) — J (k) (3.14)

Jp)+J7@—Jp +k)— Jla—k)

The inhomogeneous part of Eq. (3. 13) gives the first
Born approximation. Since at low temperature the
number of excitations are very small in compared
with N, i.e., 23{n,)< N, therefore the leading term
contributing to AF comes from

_1(43 oy2(qe12
2% - 55 ey 3.15)
Consequently,

AF =— (3a/4S)NB~1{ Z; o (BH)]264. (3.18)

The modification of spontaneous magnetization is,
accordingly,

(31/28)N¢ (£)8(3)64.

Now let us take into account the corrections due to
the homogeneous part of Eq. (3.13). We note first
that in the case of k;a << 1 and kya << 1 the kernel
of Eq. (3. 14) is approximated by

A = — 38.17)

( Ja i: t,—q) sin(aki)>
K .k o~ % — Ul .

Write the invariant form of A(p, q) as
Alp,q) = @ ¢ 12331 (0, — q)* + QyaPpeq
+ Qgat é (,— g)* + Quat ié 0 —q)?
x (b — q)* + Q;a*(p-q)? + O(a®).  (3.19)

By substituting Egs. (3. 18) and (3. 19) into Eq. (3. 13),
one can easily show that

Qy = Q4 = Q5 =0, (3.20)
28 2S 2
Q= =1k ™ UTww—iraR\ @)
where (3.21)
= x sinx + y siny + z sinz
dxdydz .
3(2 )3 f ff ay 3 — cosx — cosy — cosz

(3.22)
Therefore, the correction to the thermodynamic free
energy and spontaneous magnetization of Egs. (3. 16)
and (3.17) are modified by the factor Q(S) which is
given by

Q(S) = 28/(2S — 1 + 4R). (3.23)
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APPENDIX A: REPRESENTATION OF y,, (k)
When p = q, Egs. (2.19), (2. 20), and (2. 21) yield
X 061 = 1 _:I_s(gl (G(O) + Zl) [1 — cos(3 k-1))GM)
+ 23[1 — cos(3k-1))][1 — cos(zk-1,)]
1.1,
(2) e
XGpE) 4 o0, (A1)
where
1 1 cos(q-1,)]*"{1 — cos(q-1,)
G(l”).luE—E[ ‘11][ g n] (AZ)
1 N G (E[l - cos((pl)])"*1
1
The function defined by Eq. (A2) satisfies the sum
rules
L 6P, =L  GP =-=60 (a3)
Lyeend 1tin gl g tn-1
and the inequalities
Gim, =Gir) == GO, (a9)

At low temperature, ka < 1, x_ (k) can be power ex-
panded by ka.

APPENDIX B: EFFECTS OF ANISOTROPY
Consider the anisotropic Hamiltonian

X=—HYSP-2 J,8,8_ —DXL(SH)2, (Bl)
1 Lm 1
where D= 0.
The main part has the form
i, = E — NDS2 + 3, E,b%b, — 2+ J(0)
k N
+ + —_ —
K kK, b} b} b b G(k1 +k, ~k; —k,),
where (B2)
E,=H + D(Q2S — 1) + 28[J(0) — J (k)]. (B3)

If we follow the same arguments as in Sec, 2, it is

straightforward to show that the two-particle state

has energy €, = 2E,,,. On the other hand, the energy
of the two-particle bound state is w, = ZEk/2 — M.

Consider, instead of the anisotropic Hamiltonian of
Eq. (B1),

¥ =—H 21:‘,8(7) - 17: g[8 8 + 0SWSO)), (B4)
where ¢ = 0.
In this case one finds
¥, = E, + L EbFD, — JT(JQ)

X kl.k§k3.k4 b%,b%, bx, be 00y +ky —k3 —ky),

(BS)

where

E, = H + 2S[J(0) — ¢ Jk)]. (B8)
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The two-particle state has energy ¢, = 2E,,, follow-
ing a similar argument as before. The energy of the
two-particle bound state is

wy =2E,, —M', (B7)

LIU

with M’ satisfying

47 (0) ¥ 1

=1
N ‘¢ M’ +8SJo 2 cos(:k+l) sin2(3q-1) (B8)
1
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Nonlinear Initial-Boundary-Value Problem for Convection, Diffusion, lonization,
and Recombination Processes *
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The time-dependent convection~diffusion equation with ionization and recombination reactions is reduced by
means of a nonlinear transformation to a differential equation, in which the nonlinear term represents a small
perturbation. The general procedure of solution for the corresponding nonlinear initial-boundary-value pro-
blem is then established by means of the method of successive approximations. Uniqueness and convergence
of the analytical solution are discussed. As applications, the temporal change of an initial distribution of elec-
trons and ions is discussed for a finite box system and an infinitely extended system, respectively.

PROBLEM

In the evaluation of experiments concerned with the
measurement of ionization and recombination coeffic-
ients, one has in general to consider the simultaneous
concentration changes of the reacting particles due to
diffusion and convection. The corresponding initial-
boundary-value problem is of general interest in
plasma kinetics1~3 and radiation chemistry.4~¢ This
problem has been treated analytically in the steady-
state case by Wilhelm? and numerically in the time-
dependent case (without a first-order reaction) by
Gray and Kerr® and Reinhardt.? A comprehensive dis-
cussion of a variety of nonlinear initial-boundary-
value problems of second order has been given
recently by Montroll1? with the motivation of clarify-
ing the underlying mathematical principles for their
analysis. In the following, the nonlinear initial-
boundary-value problem for convection and diffusion,
ionization, and recombination is subject to a nonlinear
transformation and subsequently solved by the method
of successive approximations.

Mathematically, the initial-boundary-value problem
for convection (flow field v) and collective diffusion
(diffusion coefficient D)11 of the electrons and ions in
a partially ionized plasma in presence of ionization
(ionization coefficient €)12 and recombination (recom-
bination coefficient )13 reactions is described by

on

—37+v-Vn=DV2n+en—cm2, r=s, t=0, (1)

where

n(r, )0 =no(r), s, (2)
“and

n(r,t).g = ¢(s8), (=0, (3)

are the initial and boundary conditions (s = position
vector of boundary). The electron-ion density n(r, )
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is assumed to be small compared to the density of the
homogeneous background gas (a,D, € = const).

NONLINEAR TRANSFORMATION

In absence of diffusion (D = 0) and convection (v = 0)
a given particle density n(0) would change with time
as a result of ionization and recombination according
ton(t) = n(0)ect/[1 — (a/e)(1 — ¢<*)n(0}]. In presence
of diffusion (D = 0) and convection (v # 0), therefore,
a trial transformation is attempted in the form

_ u(r, et
n(r,f) = [1— (a/e)(1 — e<thu(r, t)] )
with
on _ fou — aul et 5
at (at e au) [1— (a/€)(1 — eHu)?’ ®
_ Vue©!
V= T @/ — el (®)
_ v2ueet
ven = [1— (@/e)1 — et
+ 2{a/e)(1 — eé‘)e“(Vu)z. )

[1— (a/€)1 — e<thu]?

By substitution of Egs. (4)-(7), the initial-boundary-
value problem defined by Egs. (1)~(3) is reduced to

%‘—Fv-Vu:DVzu——U, r=s, t =0, (8
where
u(r, o =ng(r), r=s, (9)
et
u(r’ t)r=s — ¢(s)e € P 0’

[1— (a/€)d — e~<)p(s)]’ (10)
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The two-particle state has energy ¢, = 2E,,, follow-
ing a similar argument as before. The energy of the
two-particle bound state is

wy =2E,, —M', (B7)

LIU

with M’ satisfying

47 (0) ¥ 1

=1
N ‘¢ M’ +8SJo 2 cos(:k+l) sin2(3q-1) (B8)
1
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Nonlinear Initial-Boundary-Value Problem for Convection, Diffusion, lonization,
and Recombination Processes *

H. E. Wilhelm
Colovado Stale Universily, Forl Collins, Colovado
(Received 28 June 1971)

The time-dependent convection~diffusion equation with ionization and recombination reactions is reduced by
means of a nonlinear transformation to a differential equation, in which the nonlinear term represents a small
perturbation. The general procedure of solution for the corresponding nonlinear initial-boundary-value pro-
blem is then established by means of the method of successive approximations. Uniqueness and convergence
of the analytical solution are discussed. As applications, the temporal change of an initial distribution of elec-
trons and ions is discussed for a finite box system and an infinitely extended system, respectively.

PROBLEM

In the evaluation of experiments concerned with the
measurement of ionization and recombination coeffic-
ients, one has in general to consider the simultaneous
concentration changes of the reacting particles due to
diffusion and convection. The corresponding initial-
boundary-value problem is of general interest in
plasma kinetics1~3 and radiation chemistry.4~¢ This
problem has been treated analytically in the steady-
state case by Wilhelm? and numerically in the time-
dependent case (without a first-order reaction) by
Gray and Kerr® and Reinhardt.? A comprehensive dis-
cussion of a variety of nonlinear initial-boundary-
value problems of second order has been given
recently by Montroll1? with the motivation of clarify-
ing the underlying mathematical principles for their
analysis. In the following, the nonlinear initial-
boundary-value problem for convection and diffusion,
ionization, and recombination is subject to a nonlinear
transformation and subsequently solved by the method
of successive approximations.

Mathematically, the initial-boundary-value problem
for convection (flow field v) and collective diffusion
(diffusion coefficient D)11 of the electrons and ions in
a partially ionized plasma in presence of ionization
(ionization coefficient €)12 and recombination (recom-
bination coefficient )13 reactions is described by

on

—37+v-Vn=DV2n+en—cm2, r=s, t=0, (1)

where

n(r, )0 =no(r), s, (2)
“and

n(r,t).g = ¢(s8), (=0, (3)

are the initial and boundary conditions (s = position
vector of boundary). The electron-ion density n(r, )
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is assumed to be small compared to the density of the
homogeneous background gas (a,D, € = const).

NONLINEAR TRANSFORMATION

In absence of diffusion (D = 0) and convection (v = 0)
a given particle density n(0) would change with time
as a result of ionization and recombination according
ton(t) = n(0)ect/[1 — (a/e)(1 — ¢<*)n(0}]. In presence
of diffusion (D = 0) and convection (v # 0), therefore,
a trial transformation is attempted in the form

_ u(r, et
n(r,f) = [1— (a/e)(1 — e<thu(r, t)] )
with
on _ fou — aul et 5
at (at e au) [1— (a/€)(1 — eHu)?’ ®
_ Vue©!
V= T @/ — el (®)
_ v2ueet
ven = [1— (@/e)1 — et
+ 2{a/e)(1 — eé‘)e“(Vu)z. )

[1— (a/€)1 — e<thu]?

By substitution of Egs. (4)-(7), the initial-boundary-
value problem defined by Egs. (1)~(3) is reduced to

%‘—Fv-Vu:DVzu——U, r=s, t =0, (8
where
u(r, o =ng(r), r=s, (9)
et
u(r’ t)r=s — ¢(s)e € P 0’

[1— (a/€)d — e~<)p(s)]’ (10)
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and

2(a/e€)D(1 — e<t)(Vu)?

o=— r=s, t#0.

[1—(a/e)1 —eth]’

The nonlinear transformation is generally valid, since
Eq. (4) provides a unique interrelation between

n(r,t) = 0 and u(r, t) = 0, which is free from singu-
larities for any point {r, t}.

(11)

A comparison of Egs. (8) and (1) indicates that the
nonlinear term o(r, t) is negligibly small in Eq. (8) for
any time 0 < ¢ < o if 8(r, f) = 0/(ou2e<) is small
compared to one, i.e., if for any interior point r # s,

2(D/€)(1 — e~<t)(V 1nu)2 < 1.
[1— (a/€)(1 — ehu]

It is seen that 6(r,¢) < 1 for intermediate times 0 <
t < w, if u(r, f) is an analytically well-behaved func-
tion in the interior region excluding the boundaries
r = s where u(r, t) may be discontinuous.14 In parti-
cular,

(12)

6(r,t) =

limé(r,£) = 0,  limé(r, t) = 0. (13)
-0 t—c0

SUCCESSIVE APPROXIMATION

The transformed initial-boundary-value problem,
Eqgs. (8)-(10), can now be solved analytically by means
of the method of successive approximations. In this
approach, the small nonlinear term o(r, t) is treated
as a perturbation.

vth Approximation,u(r, t) = u,(r, t). The initial-
boundary-value problem defined by Eqgs. (8)-(10)
reduces by evaluating the perturbation o(r, £) in the
(v — 1)th approximation to

du,
—a—l¢—+vVu —-szu —0,
2(a/€)D(1 — e“)(Vu,,.l)2

YT 1= @/ — e, ] (14)
u (T, )0 = no(T),
uy(r’ t)rzs — ¢(S)e"€t

[1— (a/€)1 —e-<t)p(s)]

This is a linear, parabolic problem with a source
term o,[#,_4(r, ), t] known from the (v — 1)th approxi-
mation for v = 1, while in the zeroth approximation,
v=0,

g9 = 0. (15)
In any approximation, v = 0, the original function
n(r, t) is given in terms of « (r, f) by Eq. (4). Thus,
the reduction of the nonlinear initial-boundary-value

problem to a linear one is established, i.e., its ana-
lytical solution.15

G(x,y,2|§ n,¢,1)

APPLICATIONS

As an illustration, the method of solution is applied to
initial-boundary-value problems for a three-dimen-
sional box and an infinite spherical system, respec-
tively. Convective flow fields are assumed to be
absent (v = 0), and only the zeroth and first approxi-
mations will be evaluated. Higher approximations are
not required, since generally the zeroth approximation
is within the experimental uncertainties.

A. Finite System

The temporal development of an initial ionization dis-
tribution ny(x, ¥, 2) in a box with side lengths a,b, ¢
and homogeneous particle densities at the walls

[n(s, t) = ¢,) is described by the (transformed) initial-
boundary-value problem

a_u:D(a_%;+&+@)_o,
at 0x2  9y2  0z2
¢ =—22%p@1— eet)((‘“’u/ax)2 + (0u/3y)? + (3u/3z2)2)
¢ 1— (a/e)1 — ety /)’
(16)
where
u(x,y,2, )0 = nylx,,2), amn
u((x,y,z, tt))x =0,a f 'J‘((tt)) 0= N
ux,y,z, 'y=0,b =p S B —1_(a/€)(1_e—et)¢o’
u(xay,z, t)z=0,c = M(t) (18)

and0=x=gq, 0=y =<b, 0 =2 = c. By means of the
linear substitution

u(x,y,Z,t) = p(#) +w(x,y,z’ t); (19)
the initial-boundary-value problem defined in Eqgs.
(16)—(18) is reduced to

ow du
where

w(x,y,z,t)t=0 =n0(x,y,z)—¢0 (21)

and

w(x,¥,2,8),0,=0, wlx,y,z, t)y=0',, =0,

wlx,9,2,1),4.=0. (22)

From Eqgs. (20)~(22) and (19), one obtains for ¢ = 0=
0 the solution in the zerolh approximation,u = ug,

abc
ug =) + [[[[no(&,m,8) — ¢l
000
x G(x,y,z|&,n,¢, dtdndt (23)

£ abc
au
" J<ﬁ>t=;d70fofof Glx,,21¢,m, ¢, t — TMdEdna,

where G(x,y,z | £,m,¢,t) is the source function of Eq.
(20} [boundary conditions according to Eq. (22)],

Z) E % eXp; [(Aﬂ)z + (—%"-) i (ECE> zjlsDt sin%T—Tx smeEy s1n—z s1n—£ san sm—-—C (24)

abcA =1 p=1v=1
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Similarly, there results from Egs. (20)-(22) and (19),
by setting 0 = 0, = 0, the solution in the fir st approxi-
mation,u = u,,

¢

ab
—fdrfff (&, n,8,7)
0 000

Gx,y,z|§,fl,§,t—7)d§dﬂd§, (25)

where
(Buy/8x)2 + (Buy/3y)2 + (duy/02)2

1= —ZED(I — e€t)
€ 1— (a/€)(1 — ecthu,

(26)
is given in terms of the solution of the zeroth approxi-
mation and G(x,y,z|&,7,¢,t) by Eq. (24).

According to Egs. (4), (21), and (24), the particle
density n,(r, t) is in the zeroth approximation,

uq(r, best
nir, 1) = o , (27)
1 — (a/€)1 — e<Hug(r, 1)
where
uOr t)_ Z; Z} Z;A)\‘“’
=1 p=1 v=1
X eXpl— 1\ t) sin%x sinEbEy sin"_c"z
(28)
S $ 3 AT o ‘,,L‘TT . vh
+ E Z EBM‘” Vkpus)\;w(t) Sm—a—x Sln—b—y s1n?z’

[

93 4% AT, T L VT ;
A"‘“’zmofofof no(§,7, §) sin—¢ sing-n sin—L dédndt,

(29)
= 3[1_(" )‘JL “][_(— ]
B}\yl/ ( ) v (30)
¢ ’ -1

S)\,“,(t) = ¢0 exp(— y}‘“"t)bf(l — g(l _e-ET)¢O)

x expl(y,, — €rldr  (31)
and

Yauw = [A7/@)2 + (un/b)2 + (v1/c)2]D. (32)

It is noted that the BMW are the Fourier coefficients
of the function which is f(r) = 1 within14 0< x < g,
0<y<b,0<2<¢:

@ o0 A.

22 Z}BMU, sin—« s1n—5—y sm—z =1, r=s8. (33)
A=l p=1 w=l

The characteristics of the solution given by Eqs. (27)
and (28) depend in general on whether (i) the boundary
conditions correspond to an equilibrium or non-
equilibrium state and (ii) the ionization coefficient €
is smaller, equal, or larger than the first eigenvalue

v111 = [(#/a)2 + (7/b)2 + (7/c)2]D.
The corresponding steady-state solutions n_(r) are

obtained from the respective solutions n(r, ¢ 03 by the
operation

(34)

limn(r, t) = n_(r). (35)

t—>o0
It should be noted that this limn_(r) is not necessarily
applicable at the boundaries r = s, since in general,
for mathematical reasons,

lim (limn(r, t)) = lim(limn(r, t?.

r—+g\i~>c0 {—»>wo\r—>g

(36)
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1. Equilibvium Boundary Condition, ¢, = €/a

If ¢ = €/a, then p(t) = ¢q and S, y(t) = ¢y|1

— exp(—y)\wt)]/-y)\ , by Eq. (31) In this case, Egs. (27)
and (28) give as steady state solution in the zevoth
approximation,

n(r)=€/a, €2y, (37
Hence, an equilibrium density ¢, = €/a as aboundary
value leads to a single, homogeneous steady- state
distributionn_(r ) ¢0y 0=x<a, 0=<y=<b,0=<

z = ¢, for any € 39111
2. Nonequilibrium Boundary Conditions, 0 < $o #
€/a

If 0< ¢ # €/a, then the integral S, u(t) is non-
trivial, and has by Eq.(31) the asympto'ac properties

1tirgsm(t) =0, €3y (38)
) b0
lim[e€ts, ()] =
e = ==y <
limle<ts, ()] =@, €= Y (40)

{0

Accordingly, Egs. (27) and (28) give as steady-state
solutions in the zeroth approximation,

Y A
n (r) = E EB £
1— (a;€)¢0|)\1p1u MYl — €)
(AT pm T
x sin—x siny sin—z

o

( /€)¢0 2 Y A

[T—{a/€)¢,) >\Z1 pZ=>1 EBM‘"('}’)W —€)

<

JAam o opm opr L
x sinzx sinpy sin_—z| , €e<yi11s (41)
n(r)=¢/a, 0<x<a, 0<y<b, 0<2<c¢,
€=y1y; n(8) =limn(r, ) = ¢,. (42)
r—s

Hence, a nonequilibrium density ¢, # €/a as a
boundary value gives rise to a steady-state distri-
butions nw(r), which are inhomogeneous within 0 <
x=a, 0=y =<b, 0=z = cand different in the cases
€<vyqq;and € =y, 4.

The steady-state solutions in Eq. (41) and (42) satisfy
the boundary condition_(8) = ¢, as can be shown by
means of Eq. (33); e.g., the relevant expression in Eq.
(41) becomes

llmozc,) % Z‘,B A

T8 A=1 p=1 v=1

-] oo B
.-hm(l +eE > 3w

AL el w1 Yaw — €

Y smMTx sm‘m sinwrz
Yaw— € a 57 c

AT um vr
X sin—x si in—z] =
Z* sinpy sin—z 1.

3. Nonequilibvium Boundavy Condition, ¢o = 0

If ¢ = 0, then pu(t) = 0 and S, ,(f) = 0 by Eq. (31). In
this case, Eqs. (27) and (28) give as steady-state
solutions in the zeroth approximation,

nfr)=0, €<vy311, (43)
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n (r) =(A sin Lx sin "y sinzz
0 - 111 a F
-1
(1 + —A111 s1an smby smﬂ ) , €=vy1,, (49

0<x<a, 0<y<h, 0<2z2<¢),
€2 yi11 N (8) = limn(r,t) = 0. (45)

r—s

n (r) = e/a

Hence, the special nonequilibrium boundary value
¢o = 0 leads to steady-state distributions n_(r),
which are different in all possible cases € < y;44,
€ =vyy11,and € > yy44.

In an analogous way, the solution in the first approxi-
mation [Eq. (4) with Eq. (25)] may be discussed.
B. Infinite System

The temporal development of an initial ionization dis-
tribution n4(r) of the form of a Gaussian

no(r) = [N,/ (1h2)3/2)e-7%/ v (46)

w 0»b = constant parameters) in an infinite medium
is described by the (transformed) initial-boundary-
value problem

2
a2,
ot or2 ¥ or

o=— ZED(I —e‘t)< (Bu/2r)? >,
€ 1 — (@/€)(1 — ecthu (47)
where
ulr, t)t=o = no(r), (48)
limu(r, t) = 0, (49)

and 0 = » = 0, ¥ =vx2 + 32 + z2, From Eqs. (46)-
(49), one obtains for o = 6y = 0 the solution in the
zeroth approximation,u = u,

+00
1) =JJJ nole,n, )0, y,21&,0,8, Mtdnds (50)

where G(x,y,2|£,n,¢,1) is the source function of Eq.
(47) [boundary conditions according to Eq. (49)],

Glx,y,21&,m,8,1)

_expl— [k —£)2 + (y —m)? + (2 — £)?)/4Dt}
(47TDt)3/2 (51)

Similarly, there results from Eqs. (47)-(49), by sett-

ing 0 = 0, # 0, the solution in the first approximation,

U =1uy,
t abc
— Jar[[[ oy ,n,8,7
0 000
xé(x,y’z!gy'ILC,t_T)dgdndc’ (52)
where

_ a € (auO/ar)Z
0y =—2-Dl—e :)(1 — (a/e)1 — e“)“0> o

is given in terms of the solution u#, of the zeroth
approximation and G(x,y,z l&,1,¢,1) by Eq. (51).

According to Egs. (4), (50), and (51), the particle den-
sity is in the zeroth approximations:

uO(T’ t)eet
n(r, t) = s (54)
1— (a/e)(1 — ethu,ylr,t)
where
up(r,t) = Yo _e~7*/4Drb?) (55)

[7(4Dt + 62)]3/2

Equations (54) and (55) indicate that only a single,
homogeneous steady-state solution exists,

nw('r) = G/Ol, (56)

which corresponds to the state of thermodynamic
equilibrium. This result is generally valid for sys-
tems of infinite extension.

In an analogous way, the solution in the first approxi¥
mation [Eq. (4) with Eq. (52)] may be discussed.

UNIQUENESS AND CONVERGENCE

The nonlinear initial-boundary-value problem des-
cribing the temporal change of electron-ion distri-
butions by collective convection, diffusion, ionization,
and recombination [Egs. (1)-(3)] has been reduced by
means of a nonlinear transformation [Eq. (4)] to an
initial-boundary-value problem, in which the non-
linear term is small. It has been shown that the solu-
tion of the transformed initital-boundary-value pro-
blem [Egs. (8)~(10)] can be obtained by means of the
method of successive approximations from linear
initial-boundary-value problems with a known source
term [Eqgs. (13)-(15)].

From the physical nature of the initial-boundary-
value problem [Egs. (1)-(3)], one can infer that it has
a unique solution. In order to prove mathematically
the uniqueness, the function n(r, t) is expanded in
Sturm-Liouville characteristic functions. This leads
to an infinite system of coupled, nonlinear integral
equations for the time-dependent expansion coeffic-
ients, for which only a single solution can be shown to
exist.16

In applications, the number of successive approxi-
mations to be evaluated is determined by the acc-
uracy required. The sequence of successive approxi-
mations,

{u, (x, O} = u,y(x,

converges towards the solution u(r, t) if a N(¢|r, ?)
exists to every small € > 0 such that the condition

B, u(r, t), ..., u,(r),...,

lu,(x, t) —u,(r, )] <€, forv,u > N(e|r,?)

is satisfied.17 If G designates the Green's function of
the homogeneous problem, the Ath approximation is of
the general form

t .
JdT{RffOA(ﬁ, 7,8 7)
XG(x’yszE’ny C,t— T)dgdndg-

The Green's function G can be assumed to be bounded
in the space ® for 0 = t < ©. The convergence cri-
terion reduces then, for every small €’ > 0, to

up(r, ) = uy(r, t) —

lo,(r,8) —o,(r, )| < €, forv,p>N(elr,1).
It follows that the successive approximations con-
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verge since 0 =< [o,(r,?)| < € if 0 =< 8(r,{) K 1 for
0 = { < @ as shown in Eq. (12).

Initial-boundary-value problems with boundary con-
ditions of the type considered (first kind) have solu-
tions, which are discontinuous across the boundaries
r = 8 for all times 0 < ¢ < w, since the Fourier
series representations of «(r, t) [and, hence, also
n(r, t)] are discontinuous functions of r as r appro-
aches s if ¢, # 0.14 Furthermore, in the limit { = o,

the solutions for u(r, f) are discontinuous functions of
r as r approaches s in the case € > y,,, [and hence
alson(r,?) if € > y,,, and ¢, # €/a], since the mathe-
matical result of the successive limiting processes
t— © and r ~ s depends in general on their sequence
[Eq. (36)]. Such discontinuities do not imply any
mathematical contradictions,14 quite apart from the
fact that the infinite time point £ = © is physically not
realizable.18
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Timelike asymptotic series for many-particle matrix elements of products of almost local fields are
derived which generalize and extend the Araki-Haag series of quasilocal operators. An interpretation
of the asymptotic leading terms in the form of contributions from disconnected intermediate particle
states is given. A discussion of the dependence of the asymptotic leading terms on the smearing in the

space variables is presented.

1. INTRODUCTION

Within the framework of quantum field theory, the
connection between interacting fields and scattering
matrix elements is established by the weak asymp-
totic condition via the LSZ reduction technique.l

Let |0) denote the vacuum state and

|May)_a ',(li,’yi)*l())

out(

wa ©) V32,0200 (M, P, 1) o), (U

a discrete one-particle wave packet state with
mass M, and internal (symmetry) quantum numbers
.2 I-Iere a,, are the asymptotic creation and de-
struct1on operators satisfying the canonical (anti)

commutation relations

[a (A/Ippy 7)’ ex( j E)*]
= 2uw,(p)6(p — k)au ver (2)
w,0) = : + V(M2 +p2)1/2,

{¥a,4;0)} is a set of S, functions complete and or-
thonormal in L, with respect to the measure
w,(p)~1d3p:

S s O, 0) = 8
Ead/Ma(p)\PMa(k)* = sz (9)5(1) - k).

Finally let D,_, denote the domain in the Hilbert
space b, whxch is given by finite linear combina-
tions of many particle states with nonoverlapping
wavefunctions in velocity space. A set of wave-
functions {¥ ;®,),...,¥,®,)} is said to be nonover-
lapping in velocity space, if for all p; from the
support of ¥,(p,), we have pairwise

®3)

wj(pj)Pi =w@)py, *J,57=1...,7. )
With these notatlons the weak asymptotic conditions
readsl: K A(f*°) = d4 f(y0 —x0,y)A(y) is an
almost local field,3 w1th (0{ A(£)0) = 0, if one of
the state vectors ¥,® isfrom D, and if the pointx =
(xY,x) moves to infinity in a timelike direction, then

@A) 18) 572 T, {0140 D@ lay, () 8)
+ GlA) 0 la, > @)} . (5)

Here the sum runs over all discrete one-particle
states and f is an element from S,

Araki and Haag* recognized the expression on the
ht-hand side of (5) to be the leading term (if
% A(f)10) = 0) of an asymptotic series which ex-
phc1te1y reads: If A(f) is an almost local field and

¥ Pex are both from D, then we have

2517

@, 1407018, put!) = Q1A %) Loy, Yout|By0)
+E-{(i|A(fx 0)(‘Ilout|aout(z) lq,

out

+0lAag=") i, utlacut(Z)lé ut>}
+Z<z|A(fx I;)T(woutl out(z)*aout(;)l%ut)

R, 559, (8)
with the remainder R being bounded in x0 by
\R(¥, &,/ < B(¥, &,7)(x0)~¥ M

for x¥ $ 0 and any arbitrary positive integer N.
The distribution of indices (6) is out for x0 > 0
and in for x© < 0.

The first term in (6) is a constant by translational
invariance and often put equal to zero. Since the
matrix elements of A(f*) between vacuum and
one-particle states are smooth solution of the
Klein—Gordon equation, the curly bracket in (6)
behaves asymptotically like (x0)~3/2,

Finally by means of the stationary phase method,
one can show? that the double sum in (6) behaves
like (x9)~3. In other words by Eq. (6), we have re-
duced the many-particle matrix elements of a field
operator to the three possible types of vacuum and
one-particle matrix elements with well-known
asymptotic behavior plus a remainder vanishing
faster than any inverse polynomial.

Of course the smearing of the field A(f) in the
space variables x can be dropped in (6). According
to Borchers5 almost local fields® together with all
their derivatives are bounded operator-valued
functions in x after smearing in the time variable
x9, If we drop the smearing in space, then (6) holds
uniformly in x.

Furthermore for self-adjoint operators A,(t),
which destroy the vacuum state, it was shown in
Ref. 4 that

Bx)

exists for ¥_  or ., € D, and is essentially
given by the matrlx element of a product of n-
particle density operators.

im #3
tl}xnclot n<\I/ex

For a variety of applications which have gained
some interest in recent years the conditions under
which (6) holds are too restrictive.

For instance, the investigation of equal-time com-
mutation relations can completely reduce to the
consideration of expressions of the form7-8

@ [[j%g,, htir-i=0), jv(0)]l&), (8)
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with ) .
RGI7 ") = (1) (x2) (x3)”,

i,j,¥ = 0 finite.

In order to connect the matrix elements above to
(off-mass shell) scattering amplitudes, one always
has to use a generalized Gauss theorem in one or
the other form.9—13

This means one rewrites the total charges,i.e.,
their moments, as four-dimensional integrals over
the corresponding divergences of the currents,
which in turn are interpreted as interpolating
meson fields via the principle of Haag!4 and Zim-
mermannl5. In a rigorous treatment of this step,
one has to calculate by means of expansions of the
type (6) the contributions of infinite timelike sur-
faces.9,13

Speculative applications of (6) to cases not covered
by the proof in Ref. 4 lead to the resolution of
curiosities like frame dependences of sum
rules.9,13

Therefore, it is worthwhile to generalize the asym-
ptotic series (6) in two directions: (i) To extend
(6) to the case of more general “smearing func-
tions” in the space variable x than S 5; for instance
to 0,5 distributions and at least polynomials or
0,5 functions.16 (ii) To consider instead of one
single held operator A(f J‘o), a product of fields
M4, (f"z (which do not necessarily destroy the
vaCuum state).

Both these generalizations will be the main topic
of the present paper. A further interesting prob-
lemisthe origin of the leading terms in the asymp-
totic series like (6). By this we mean the inter-
pretation of these terms as contributions from cer-
tain intermediate particle states. We will show
that they all originate from disconnected inter-
mediate particle states.

All our results follow from the general postulates
of Wightman fields with the exception of strict
locality.1:17,18 stead of strict locality we as-
sume only almost locality.3 In detail we require
for the fields: (i) The fields A4, (f) smeared with
test functions f (x) from S, are operators with a
dense domain in a Hilbert spaceyf . (ii) Transla-
tional invariance. (iii) Spectrum condition, i.e., all

states in § have real masses and positive energies.

(iv) Almost locality3; roughly this means that the
commutator of two fields vanishes in spacelike
directions faster than any inverse polynomial.

According to Borchers® these assumptions imply
the smearing of the fields over the space variables
to be superfluous. After smearing in time, the
fields A, (g;x) are operator-valued bounded C*-
functions® in x. Moreover their n-fold truncated
vacuum expectation values are from S, ., in the
n — 1 difference variables §, =x, —x,,,({ =1,...,
n — 1). This property, called (B) in the following,
plays the central part in our proofs. For simpli-
city we will give the proofs only for scalar parti-
cles. The generalizations to other particles are
trivial.

J. Math. Phys., Vol. 13, No. 2, February 1872

I. TIMELIKE ASYMPTOTIC BOUNDS

In this section we are going to prove some time-
like asymptotic falloff properties for truncated
vacuum eXxpectation values of field operators.

Let Bi(x) be an exact one-particle excitation ope-
rator" built from an almost local field A,(x):

B,(x) = : [dYfy (v —x)A4,(9)
= [a%peirsfy (p)A,(p),
with fM (p) € S, and support fu, concentrated in a
hose around the discrete one- particle mass shell

P2 = M? in the forward cone. It has the proper-
ties

(9)

B. =
B,(x)*|0) = one-particle state.

Furthermore let fh(,:i,i (x) be a smooth positive-fre-

quency solution of the Klein—Gordon equation:

Fillta, (6) =

with
7RO =¥yq @M, plB,0)* 01 (12)

: a7z J 4% 0.,(p2 — MPFOp)e % (11)

and ¥,
i et
and f,&*?ai we form the LSZ operator:

specified in the introduction. From B,

B,(ff;t) =:i | f d%B.(x)*%f,S‘?ai(x)

— fd4pE (p)* W(P)(:;P f(+)(p)e-z[w,(p) polt

(13)
which when applied to the vacuum creates a time-
independent one-particle state

2 B,(71)*10) = 0. (14)

Finally we introduce the following notations for
various spaces of functions 16: (i) 0,, denotes the
space of all polynomial bounded C*-functions of n
variables. (ii) The Fourier space of 0,,,that is,
the space of all strongly decreasing distributions,
is denoted by 0,,,. (iii) By 0f,, we denote the sub-
class of 0, functions which are fourier trans-
forms of 0/, distributions with point support.

(OMn contams for instance all polynomials of n
variables and the trigonometric functions.)

With these preparations we can now formulate our
first theorem

Theorem 1: Let {f.f (+)(P) i=1,
and {f<+) (P.);] =r +1,,.

of wavefunctlons with nonoverlappmg support in
velocity space. Let {A(x),i=1,...,n} be a set of
almost local operators and D(¢, Tl, Tz,xQ, veeyx9)
a differential monomial of arbitrary degree. Then
we have for all r,s with» = 2 or s = 2 and for all
g,(x% € S;; ](xj) €0,3U 0z :

3

.7} €S,
.y S +r}es be two sets

|DOI, B, + 1)

X l'[ A (g“x“ h )H1 B, (£t +12)*10>T]
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=(1 + 2)~N1 + rPho(1 + 1) %0

n
x T1[L+ @2]5C(t, 7y, mp520 g+ he ),
j=1 (15)
with N any arbitrary positive integer, {L,, L} some
finite positive integers. C(--+/++-) is a bounded
continuous function in £ when 7;,x9 are kept fixed
and vice versa.

Proof: Without loss of generality we assume
s = 2 and {fgl), } nonoverlapping. Multiplying out

[ 2
all the differential operators, we find that the left-
hand side of (15) is bounded by a finite sum of
terms of the form

r
It,7,,79;%9,...,29) = ‘fileld:’yid‘lzifi(*’) (t + Tlei)*(»fMi(z? —t—7y,2,—Y,)

S n
x JI1d%, 4%, (9 + 75, 5,.5) i, Gy =t = T2 Ty — %" [T du £, 0@ — 1~ x9)Oh, (w,)

7 n $ * T
x {0 lelAi(zi)II:TIAl(u,)jI:TIA“j(zﬂj) lo)7l.

(16)

Here ()) indicates possible time derivatives. By translational invariance,the Fourier transform ofthe

truncated vacuum expectation value has the form

<0l iI:IIAi(Pi ) zr:[IA’(k’) ;‘rillA“i =P,y )*l 0> !

r n s
= 6<2Pi + Z>kl - Z;Prv)WrﬂHs(Pl’ b
i=1 I=1 Jj=1

where according to property (B) If’,

tnts

(-+*) is from S3,,,.

Pk,

yE oy

kP P‘r+1""’Pr+s-1)T’ (17)

LA SRS )

-1 after smearing in the energy variables

with functions from S, ,,, ;. Introducing everywhere in (163 the Fourier transforms, we obtain

” ~ res=1
It, 71972;"(1)’ v ’xr(:)) = f,nldskjhj(kj)f zrzll dapi
j=
x X(Terz;x?v s 7x,9 [ply LIC 7pr;k1y s ,kn’py+1’ e ,Pr+s-1)
X expl— By, .., Pyeg-g, Kqy e K, (18)
where we have used the abbreviations
s=1 r r n s-1
QP1s-esPyisarKy, o 00K,) =1 2 w0,,0,.) — 2 wp) + w,,,s(. P+ 2k, — 2Py, (19)
i=1 ©j=1 i=1 1=1 j=1
_ s=~1 r n s~1
Q(ply s ’pr+s—1’k1) R ak,,) =: _Z:]‘-‘)Tﬁ(p,»,;) + wr+s(, 1P,~ +IZ;k1 - _Z)lpr+j)7 (20)
i= i= = J=

1 r n s=1
X(T17T2!x?’ v ’x2|p19 . -"pr,k17 "'ykn’pr+17' "’pr+s-1) = (20) f;ﬁﬁ) *0)(211)] +IZ>1kl_Ep‘r+i .
rts j= = =

I a9z €90 [T B )0 T, (p)O*
x J.Elldjg_(,) iqlmf’ Py sz,(Pi) /

dp?

s =1 7+l
LI A S— )] *() [4)]
ll;Il 2wr+l(pr+l) 7y+l (pr+l) er+l(py+l)

r n s=1
xfj”r**l <jz=:1p" +l§1kl— iZjlp—,wi) ﬁ,,,+n+s(p1,'°'vpy,k1""!kn’ r+lr* r+s-1)

X exp [i(@l(wj ®) —pO)7, - Elkggcgﬂ exp [— ¢<ﬁ<p1,...,p,+s_1,k1,...,k,,) - Dop- ilkg> Tz}.

J

X717, %9, o 201Dy, oDy Ky e Ky By e e ey
p,,,,s_l) may be considered as a continuous linear
functional from S, _,,_; depending on the 3(» +

s —1) +4n + 2 parameters 7,,x9,p,,k;. Asa
function of these parameters it has the following
three important properties.

1. It is from S3,,,.¢-3) in 2all momentum variables
aud has pairwise nonoverlapping support in the
velocity space corresponding to the set {p, oo
Prisal-

2. It has also pairwise nonoverlapping support in
the velocity space corresponding to the set of
variables

@y

T n s=1
{Pr+1,~--,Pr+s-1:jZ:)lpj + lki—lglp,+l}.

i =
3. It is a polynomial bounded C*-function (0,,,
function)} in the time variables {x3;7,,7,la =

1,...,n5.

Properties 1 and 2 follow from the corresponding
property of the wavefunctions -+« (P) and the
truncated Wightman function W,, .. which due to
(B) is from S3,,,. ;) after smearing in the energy
variables.

The truncated Wightman function W,, ., (P4,...,
P k... kR, P P .. ,)Tisatempereddistri-

R RAT S Rl S LA AL Rl e ¥ 3
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bution in the energy var1ab1es PO k0. Multiplica-
tion by functions g; (kO) - (P) S 8% §, results in

a strongl decreasmg dlstrxbutlon (from 0c(r+n+s-l))
in {ko PQ;. However,the Fourier transform of a
Oc(““s -1 distribution is a 0p(, 4y+5-) function.
This proves property 3.

If (x) € 0,5 then Z,(P) is from 0,,. This mea.ns
the ’whole mtegran in (18) apart from exp{—

- +)¢} has again the properties 1-3. If k; (x)
0M3, then the Fourier %, (k) is of the form

) = .};1&; (%) 5k — a,,),

where P, (3/0k;) are polynomials in the differential
onerators a/ak 1 =1,2,3. In this case we can per-
form the k mtegratlons in (18) by means of the

5 functions. After this operation,the integrand of
the remaining p integrals has again the properties
1-3, with k replaced by a;.

(22)

In both cases we can follow the classical argument
of Heppl:12 to show that the integrals in (18) are
functions from S, in {. Combining this with proper-
ty 3,we get

I(t,7,,75,%9,...,x9) = (1 +¢2)~¥
X (L+7Phe(t + 790 [ [1 + (2]

XC(t,7y,Tg,%9,...,x%1g. .. k. ..). (23)
Here N is an arbitrary positive integer and {— oL 1}
are some finite positive integers. C(-* |g

k--+) is a positive bounded continuous functlon in

t for fixed {r;, 0} and vice versa. This proves our

theorem.

For h(x) € 0/ and D(f,7,,7,5,%9,...,x9) of the
form
— a2
D =D871872’

we can prove the following generalization of Theo-
rem 1.

Covollary 1: If the assumptions of Theorem 1
hold and if moreover k;(x) is restricted to 0.4,
then for alln,r,s = 0, we have

|D ark<°‘ 0BUP;r +1)

x i Adgrte, m) 1B, 851y + )7 0O

< Gylm, + C(x9, . ..
fork=1,2,

lb—ari:-rz <0

(T)
2 % Q)
x Badgtsm B, U8+ 0%[0) |

,xg|g"',h -et)
(23'a)

)
lﬂle(f 7t t)

’xglg...’h...),
(23'v)

with G,(#) bemg posmve function from S, and
c,(x9, . |g -,k -+ ) are polynomial bounded
contmuous functions

Gy(ry + DGy(ry + DCo(Y, . ..
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Proof: We restrict ourselves to the proof of
the last relation. First, we consider the untrun-
cated matrix elements. Applying Schwartz inequa-
lity twice, the left-hand side of (23'b) is bounded by

ne + Tl,t + T2|x0. ., xD)

_“ dTlt 1 z(f(+) 7y + 0 |0>”

LB, (D5, + p*0l0) |

X H 1A, (g2 1 )*O) FIA REASNALS

d
xd‘r

k=1or 2.

1B U9+ t)*O) !

(24)

According to Hepp! and Eq. (14) the first two fac-
torsare fromS;. The last factor may be developed
into truncated matrix elements Then all terms
which contain only factors with at most one B,(- - *)
and or one B( *)* vanish by means of (14). In
the remalmng terms we can apply Theorem 1.
This proves the corollary for the untruncated
matrix elements and all #n,7,s = 0, From the re-
cursive definition of the truncated matrix ele-
ments,1+18 corollary 1 then follows also for the
latter ones.

The following important property is an obvious
consequence of property (B).

Covollary 2: I the assumptions of Corollary 1
hold and if moreover some or all hj(x) are of the
form

D)
hy;(x) = o(x —y,),
50 = ey Y
then the functions C; (x9,...,x9/g ***,h,) occur-

ring on the right-hand sides of (23'a) and (23’b) are
bounded in all arguments y, by a constant.

Theorem 1 and Corollary f are already sufficient
to derive the asymptotic series for k(x) € 0/,4
Unfortunately Corollary 1 does not hold if at least
one h(x) is from Oﬁa, since then the third factor

on the right-hand side of (24) is infinite. However,
the following theorem provides the necessary
bounds to cover also this case.

Theovem 2: Let{/f®(P);i=1,...,r} € S; and
{7 (+J( P,.;);j =1,...,8} € S5 be two sets of wave-

functions with nonoverlappin support in velocity
space and {4,(x);i = 1, % a set of almost
local operators Then we have for all mtegers
r,s,n = 0,all g,(x0) € Sl,h(:s) €0, 53U OM3 and
for t > 0:

U wdi a—a— J [—!ll d3x;h(%;)
x{0| A By + O Ale AT
xnle(f@]),Tz + 4] 0> |

< tVC(xY, ..., x0lg ko),
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and
2
’ foco d'rlf;o d‘rzf‘lfll d3x; hy(x ) 9

01,07,

<0| [B(fst+ 7)) niA (g" " x)

x 0B, U872 + 0 ]o>|
SENCwQ, ..., x0g o ke (25b)

Here N is any arbitrary positive integer and
Ci)x9, - x°|g - h --+) are for fixed finite x¢
some ﬁmte constants. The bounds (25a) and
(25b) remain true for ¢ < 0 if fo dr, is replaced
by f a,.

Proof: For all h{x) € 03, Theorem 2 is an
obvious consequence of Corollary 1. For simpli-
city we restrict ourselves to prove the second in-
equality for all &, ()5) being from (14 M3

Dropping all variables which are not essential for
the following arguments we introduce the short-
hand notation:

2
LX) d

F(14,79;t,%4,.. = 37,07,

<o | BBU®;t + T A, & x) (26)

x (B, 83t +7)* |o>

Similar to the proof of Theorem 1, the function

F(--+) may be represented by [take in (18) 7 ;&) =
exp{ikx, }]

n r+s-1
9xn) = f],l:[ldakj f il:ll d%z

X X(Tq,793%9,.

F(T,To5t, Xy, ...
. ,x2|p1, RS N SRS N
| JUCTRRRYS SN exp{iza)kaxa}
xexp{— iQ(p, . LK) (27)
{Q,ﬁ} are defined in (19) and (20). ¥ is a sum of

expressions of the form (21) with the Wightman
functions WNMS( )T replaced by

Py Ky,

[ﬁ(pl, ces P Ky en,K,) — éﬁo - ankg}
[Z)(w(p)- ) ANCRR

Especially X has the properties 1-3 stated in the
proof of Theorem 1. Therefore we can again apply
the trick of Hepp! and deduce from the represen-
tation (27) that

9 !ml

37mg al (T1T2it Xy
1 2

’ xn) € s3n+1

for every fixed 7,( = 1, 2) and all m,m,. Further-
more we obtain from Corollaries 1 and 2:

() D@E,xy,..., X )F(14,75;0,X,...,X,) €S,
for every fixed (3n + 1)-tuple {t,x, .
arbitrary differential monomials D.

.,x,} and

(ii) |F(71,72;t,x1, e ,x")ls G, (t +7)G,(t +7,),
with G; € S, independent of x,(i =1,...,n). From

these three properties it follows immediately that

n
s;xp} t";l;llhj(@)F(Tl, To3t,Xq,...X,

< *C_N(‘rl,rz),:l + Zn)x?] (28a)
i=1

and
supltNFTl,Tz;t,xl,...,xn)|
t>0
S Cy/[(1 +72)(1 +73)]¥  (28D)

for 7,2 0,4k, (x) S 0M3 and all integers M,N = 0.

Now let Ej(1,,75,X4,...,X,),i = 1,2 be two C=-
functions with the properties

iEz() =
i=1

E(r1,79,%1,...,X,)

: n

S 1for (7§ + 73 + Z;::%)lfz =R

< 1=

’ n

0 for (73 + 7% + Z})ﬁ)l/? =R + AR.
i

(29)

Consider the integrals
o0 o0 n
N_ . 3
= ?BgtN! fo dTlfo dr, fjl:[ld xf(x;)

X E(T1,Tg, Xy, 00, X)F (T, 79,6, %y, ..., X,)|.

n
Due to the conditions (28a), (28b), and (29) 7} is
obviously a finite number for every integer N = 0.

Furthermore the two bounds (28a) and (28b) imply
that for arbitrary positive integers N, M, and

T, =0

i b

n
tsgg tl‘;lz'llkj(xj (T, To; 8, Xy,...,X,)

n

~offt +ri+ Hui) ] o

holds along every straight line through the origin
T1,T9,Xq,..+,X,} = 0 in the direct product of the
half-space H,, = {r;,7,;7; = 0} and the 3n~dimen-
sional Euclidean space E3n

However, (30) in turn guarantees that also I} is
finite for every integer N > 0. This may be seen
by introducing polar coordinates in H,, ® E,,.
This proves Theorem 2.

By means of these timelike asymptotic bounds, it
is now very easy to derive the asymptotic series
of the field operators.

oI. ASYMPTOTIC SERIES

In this section we proceed in two steps. We first
demonstrate the essential arguments of the deri-
vation for the simple case of a product to two
almost local fields. After this the generalization
to an arbitrary number of fields will be obvious.
Furthermore we assume for simplicity that the
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vacuum expectation value of a single field A; vani-
shes:

©lar)loy=o. (31)

In the opposite case we have only to add further
terms to the following series in an obvious way.

2
(For LA)

exf <‘Ilex j= 1A](f) ex>
- Z;<<0[ 4,5 >(\Ifex

-2 (¢l 480

+ (014, (F)) 101 A, (F,) 5 X, |
+ GlA, (F) 10X 1A () Lo, la,, (5)*
—i§§k{[<olA1(fl) 11 | A, (f5) [R) + (1 2)] (\Ifexlaex(j)*ae
+[G 1A, () LOXR AL (f)D) + (1 & 2148, |a,, () *agx

- MZ%JQ |A, (f1) )¢k lAz(fz)ll)(\Ilexlaex(i)*aex(k)*aex

Now the connected part defined by this formula
has some strong falloff properties if one or both
time variables move to infinity.

Theovem 3: Let ¥, and & , be asymptotic
many-particle states from D_, with nonoverlapping
support in velocity space. Let furthermore at
most one f;(x) be from §; ® 0543 and the others
from $;® 0,5. Then for { > 0 if ex =outor { <0
if ex = in we have

' (qlex IAl(fi'ly?)AZ (fé*yg) Iq’ex>c|
= [t1=¥C(f,,f51¥0,59), (33)

with N any arbitrary positive mteger L, some
finite positive integer and C(f,,f, y? yg) some
finite constant.

Proof: 1t is sufficient to prove the theorem for
outgoing states containing #, -, respectively #,,
particles with nonoverlapping support in velocity
space. By means of the strong asymptotic condi-
tion

s — lim

t—+o0 e !4 q’ou t (34)
for .
=: M B 0*10), (35)

we replace the outgoing states 3"
of the form (35):

P22 by states

out’ “out
2 t+y9
Conte LB 4, 079 ezz)
2 t+ 49
= on | B 4, 07%)
o0
2 (g
+ [ ds s <<I>t

J. Math, Phys., Vol. 13, No. 2, February 1972

72)

2 'y
LA U y’)’q";z>

0ex) 2,0+ G| 1,4, | Y0,

ex 'aex

A. Products of Two-Field Operators

We define the connected part0 of many particle
matrix elements by the following formula, in which
the summations run over all possible one-particle
states? of the theory:

L)*1, >>

(Dag () | &, )
8o () (7)1 B0 )

aex(j>*|¢ex>)
(e, )18,
D) 80}
(1)) | 3,.)- (32)

—

+{ ds—<<1>"1 nA ’*yj‘<p2>

2
+ft dsft duasau

x (o a2), (36)

We show first that the last three terms of (36) are
bounded by the right-hand side of (33) separately.

2 + 50
jl=11 Aj (flt ?7)

Case 1: Allf;(x) € §; ® 05: Consider the
second term

1,(5%, ¥3)
f ds —<<I>"1
J

B ™), 5 & 133
- [ ds—a—sé)ljl_j" B0 fi a4tk

2 +y0
A7 ]e,)

"2

x I B, ”(f(t)"s + t)*| 0>. (37)

Since a one-particle excitation operator B,(f *),5)*
applied to the vacuum state results in a time-in-
dependent state (14), the time derivative d/ds of

all vacuum expectation values of the type occurring
in the integrand of (37) with at most one B (f S
vanish. The same is then also true for the cor-
responding truncated expectation values.

Developing the integrand of (37) into truncated ex-
pectation values, the differential operator kills all
terms except those with at least one factor con-
taining at least two one-particle excitation opera-
tors B,(f ¢; S)*. From Corollary 1 we obtain for
the surviving ones the bound

I0,(39, 9P = A + £2)VC(f4, 13,53, 9Y)- (38)
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This proves the desired bound for the second term
of (36). The third and fourth term can be treated
in exactly the same way by means of Theorems 1
and 2, respectively, together with (14),

Case 2: Onef,(x) € §; ® 4 ‘us: The only differ-
ence from Case 1 has 1ts origin in the occurence
of a vacuum expectation value

©1A, (72N, (199 0) (39)

multiplied by truncated vacuum expectation values
of the operators B, (f ®; ) in the development of
the integrand of (37) 1nto truncated functions. The
latter factors guarantee the desired bound in  as
above. However,the term (39) does ex1st if and
only if at most one f;(x) is from S1 ® O . This
follows from property (B) stated in Sec I ‘21,22

There remains the first term on the right-hand
side of (36):

1,(»9,5%) = <¢”“ “”2)’4”,’2>

=0l 0 BP0 d 4,0 @)

x 19 B, (500,
In the decomposition into truncated vacuum ex-
pectation values, all terms with at least one factor
containing at least two field operators B,(f *); )
or two B,{f ), {)* satisfy the bound (33) due to
Theorem 1. Therefore we have to pick out only
those terms which contain exclusively factors
w1th at most one B,(f); #) and/or at most one
B, (f&; ). Besides the two-point functions

OB (£ 0B,(f); 1)10), (41)

such possible factors are
2 440
O] 4, 4,010,

1
Ol 8, 4,628,075 0% )"

=Col B, 4,091,
Q|70 B A, 7899] 0" )
=Gl A,

JEXALY 1'211 YW XACTMI

A (7] 0y,

= G| 4, 4,005,

and are all possible products (§ = 1, 2) of the fol-
lowing terms:

©1a,(£ 0B 1% 0*10) = (01 4,(7F D),
1B, (77 04,7190 = (rlAa, (£ 29 0),
43
©IB, (£ DA DB, b loy” #3)

= GlA (D)9

Each of the matrix elements (42) and each of the
products of (43) is multiplied by a product of the
time-independent two-point functions (41) build
from all the remaining one-particle excitation
operators. These products of two-point functions
define according to the Haag-Ruelle scattering
theoryl,18 the scalar products of asymptotic par-
ticle states.

Applying the following relation which follows from
the canonical commutation relations of the asymp-
totic fields:

Tpsann =1 {r tr}
=1 “B < ‘{J P 1a (B')*lo>
‘<‘I’ mjﬂ Gox (@) ” L Zex(B)? 10> (44)

and going back from the truncated expressions
(42) to the untruncated ones, these terms which do
not satisfy the bound (33), deliver exactly the sums
in the definition of the connected matrix elements
(32). This proves our theorem.

Remark: Theorem 3 can be extended to the
case that both f, (x) € §; ® Oﬁm if one considers

(o B ala, Y = (ol B 4,00[0) cx, e,

instead of the connected part alone.

B. TheGeneral Case

We start again with the construction of connected
many-particle matrix elements analogous to (32).
Ag it is obvious from the proof of Theorem 3 we
have to collect from the decomposition of the
matrix element

n n H’

(45)
into truncated vacuum expectation values all those
terms, which consist exclusively of factors con-
tammg at most one B,(f*; #) and/or at most one
B,(f; H)*, and to subtract them from the original
matrlx element These possible factors are, be-
sides the two-point functions of the one-particle
excitation operators, the following ones:

(OIA,.]...AinO)T,
O N ), *k {a\T
<0‘B](f1 ’t) zglAilBs(fs ’t) lo>

= <jl[l=rllA s>T, (46)
O>T = <Jl 1131 Aiz 0>T;

Ols,0 50 1 4,
Ly 42570y = o fa

O1.0, B0 B At T B, (52 07|0)

r=1,2,...,n

Here {i, ..., 7, is any subset of {1, ... ,n} with

i iy <--- <,
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In the first instance we collect from all possible
products of the expressions (46) those with a fixed
number s = n of one-particle excitation operators
B (f®; )" and a fixed number » < » of operators
B;(f®;1). These are given by

<r§n ; s<n min{r,s}
M j Ay Al Ij +)=
a=1 o 1 7 lejr B r
m
x pazr)t ar—fl <]°"Ai‘ka ik +t ’]r+q>
(1,....n}
x 0 (]B|A e Ay L 0T (47)
B= m+1 88
X n 014, -4y, [ Fpes? T
d=m+1 Eyes r+d tr+d
X e . Teoon . X T,
(o[A‘E1 A,{fﬂlO) (0|A,§l Aln(0>

Here ), extends over all partitions
part

{lkl... ikl+t1}’{ik2. . -ik2+gz} e {'lgl e Zn} of

{1,...,n} into disjoint subsets such that in every

truncated matrix element on the right-hand side

of (47) the order of the field operators is the

same as in (--+ [|Ay,...,A4,ll---) on the left-hand

side. Furthermore in order to avoid double

counting of factors, we impose the following order-

ing condition: Within each of the four different

groups of truncated matrix elements the factors

are ordered according to increasing index of the

first field A;; that means

iy, <y <0<y

ikm+1 < t’sz <o < ikm”,
ikmwu < ikm+r+2 < i"ws’
iy g, rr <

Finally if two or more Fermi fields occur among
the A; and B;, every term on the rlght-hand side of
(47 1s to be multlphed by a factor (— 1), N is
the number of interchanges of Fermi fields whlch
is met in going from the natural order { J1see s
1,.00yMJpuys--sdysf tothe order of the parti-
cular term in question.

Each expression of the type (47) with 0 = »,s < »
is multiplied by-products of two-point functuer}s
built from the remaining (n, — 7) fields B, (fM b5 t)

+)

and (n, — s) fields Bm(fM oy , ©)*. By means of

r+

B.(f.(+)' £)]0) = 0,
(48)

LB 0%0 =0,

and Eq. (44), we obtain for the latter products:

7y 2]

<o‘ 0 e T Go (B [0)
i=
25

t=n+1
{i#y0nn. gy} T
= (v

where ¥ ., ®22 are the strong asymptotic limits

(49)

st

¥ s
I g, (7)" T agy(G,up)
a1 ex\o 8=1 ex\r+g

J. Math. Phys., Vol. 13, No. 2, February 1972

A. HL VOLKEL

of the states

ng
@t = 1 Bf\P; )*]0).
=1
Multiplying (47) and (49) together and summing
over all v, s with 0 < 7; s = » and over all one-
particle quantum numbers? j, we obtain all pos-
sible terms from the decomposition of the matrix
element (45) into truncated matrix elements which
contain exclusively factors with at most one B;(f™;
$)* and/or at most one Bi(f ®; 1), ¥ we subtract
all these sums from the or1g1na1 matrix element,
we obtain the so called connected many-particle
matrix element:

AR 0
A, (F) 1250

(Foxldy(fy) -
= <\Ilex 'Al(f;l) .

n min{r,s}
- 22
7:5=0 jl,-~~,j,+s m=0 part
{1,....n}
3 oo . ] T
x MGy - Ay, o
r
X T (ylag, o A, |O)T (50)
B=msl B kgt
s
X I1 <0|A1k ot A"k |jy+5>T
&=m+1 r+6 rest r+6
X014y A, 07014, o4, 10 g

r ! s
X <\1Iex ’ar-ll aex(]a)* Bl_=[1 aex(]vﬂ‘l) q)ex>'
The second sum in (50) runs over all possible one~
particle states! j of the theory; the last sum is
explained after Eq.(47). With this construction of
the connected matrix elements the generalization
of Theorem 3 to an arbitrary number of fields
obviously reads as follows.

Theorem 4: Let ¥,, and ., be asymptotic
many-particle states from D_, with nonoverlap-
ping support in veloc1ty space If at most one
f,(x) is from S, ® 045 and all others from S, ®

03,then we have for ¢ >0 if ex =outor ¢ ot
ex = in:

*ex) |
= [HNC(f gy e o9 -

with N any arbitrary positive integer and C(f,
*,¥9) a finite positive constant.

0
A, (f5%)

ol

-9,  (581)

The proof of this theorem follows in exactly the
same way as that of Theorem 3. With the con-
siderations above which led us to the definition of
the connected matrix elements (50) this proof is
a repetition of the arguments from that of
Theorem 3.

By the two theorems of this section we have
extended the formula of Araki and Haag to an
arbitrary number of field operators and a class of
“ smearing functions” in the space variables large
enough to cover most applications of current
interest.
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N
IV. THE ORIGIN OF THE LEADING TERMS . ZE 1

= W=
It is quite interesting to see which parts of the ety - =L bitrgd Ny —n)!
original matrix elements (certain intermediate x 11 (8 8 )-1
states or parts of them) contribute to the leading 7T PN

terms in the asymptotic series of the last section. / N
We restrict ourselves to the discussion of a pro-~ x \0 lil:ll ae (@) Hl
duct of two-field operators and Bose particles.

The generalization to arbitrary products and

: . . . .
combinatorios and introduetion of Fermi factors X aex8)°A0) 1, 46xl8,)"19)- (52)
VA Here Il (8,, . .., B,,) is defined by
of & feld 16 called n-joud disconmected, which we. BBy, B) =2 211 Zp1 o 2! (53)
indicate by if among the quantum numbers 8,2,; Z,;-*; Z,
CRAPVIGIL ST are edual

A In order to calculate the right-hand side of (52) we

introduce a complete orthonormal set of many-
0> particle states

Ny
= <0 l _n aex(ai)A(f)_n aex(ﬁj)*
i=1 " J=1

m
[€4yeevy€pdox = Mlegy .., e,) /2 Mag,(e)*10),
if n particles of the ket (bra) run unaffected by the - i=1
field A(f) to the left (right) and destroy » parti- _ 54
cles of the bra (ket): ,5;0 m ! :13!61’ semers mse,l=1 (B4)

between aex(BN )* and A(f). Then only the terms

<‘I’ (a yA( )’q’ (B-}> withm =N, — % particles can contribute.

____f‘

Ny

(¥, x(a}'A(fHQex(ﬂ )>-W_ )‘%Nz——ﬂ! E Z) n(ﬁyl""yB
Tyrere Ty

r
= No~n
-n'l,('ri#‘)’]} €1rrens EN;n 2

)-1

Nyn N Ny-n
X T(ey, ..., €y -,)" 1<0' H aq (€ )A(S) tlel aex(B,)” !il;llaex(oei) 11:11 Aox(€;)*

|t .
X I aex(ﬁj)
Pt r oy )

1
) -w=mm =i, D, T

LEN ~
Ny n 71""'7N2“n

Nl-n Nz'n N
X Meqy..., eNl_n)‘lrI(yl, e ,yNz_n)’1<0' 1131 g, (€ JA(S) k[:11 Aoy (v IO>

Ny Ny-1 Ny Ny-n

X 2 s <Ojl'la {a;) T1 a_ {e)*
"'1"--~"N —x=L (v,;érj} s=1 YsBy 7s i=1 ex\"i o1 ex\%y
Ny
X 1 Aoy (B,)*10).

=1, (#ry, ... er_n}

By means of Eq. (44) we finally obtain for our n-fold disconnected matrix element:

N N, _ -1
<q,621({di} IAéf) |q)e>%{ﬂj}> = ‘(— — n) ’(Nz ___ "Y Z;eN e ”Z’)YNz- ) H(El, ceey ENI-,,) H(’)’l, S ,'yNz_n)-l
Ny ~n Ny -n Ny~n Ny=n
* N * N
x <0 i ZI;II aex(el)A(f) krzlaex('yk) [@<\Ife;1;(ai} [ sl;ll aex(Es) 8131 aex('?'t) q’e:%(ﬁj)>'
(55)

Comparing this formula with Eq. (32) we see that the second, third, and fourth terms on the right-hand
side are given by

E«)‘Al(fl)Az(fz)ll)(q’ Iaex(l)m’ >—~ 6N Ny 1<\I’exlA1(f1)A2(fz)l¢'ex> (56)
Nl

E(z (A3 (FOAL(F) 10X o, ) [8)2) = 5 N, N+1< lAl(fl)Az(fz)m@ (57)
LN~ 1T
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E(zlAl(fl)Az(fz))ﬁ(\If | Gox () * e (122D =y, n, (W1 1A, (f1) A5 () 180D,

The remaining terms of the asymptotic sereis
(32) originate from disconnected intermediate
states between the two-field operators A;.

Definition 2: We call a normalized inter~
mediate N-particle state

N
22 flag, )% 10)

(ny,ny) -fold disconnected and denote this by

08 ) = My, ..

P <‘I’ex(a¢} 14, (1)1 <pexfn}>
1reee s YN ee———n 1

X <¢ex{1 } lAz(fz) ICD exz{B
Ly,

El'-'

E(OlAl(fl)lz)(OlAz (f2) I ag (D)a () 1222

A. H. VOLKEL

(g (58)

—

if n; particles of the intermediate ket run un-
affected by the field A, to the left and destroy n;
particles of the outer bra and if n, particles from
the intermediate bra run unaffected by the field
A, to the right and destroy n, particles of the
outer ket.

Each factor in the expression (59) is of course the
n,;-fold disconnected matrix element introduced
in Definition 1 and explicitly given by (55). In-
serting (55) into (59) it is straightforward to
indentify the remaining terms of (32) with dis-
connected matrix elements.

The result is

(59)

~ . 1
6”1 N2-2 E <‘I’ex‘Al(fl)‘(p;’evx(l ))(@évx{l } ‘Az(fz) “peﬁ% ’ (60)
st L——Nl_.__l Ts 1—7—-N1+1—J (N1+1i!
23 1A (F1) 10X | A5 (£) 10X(E 20, () e, () 222
i
Oy, Ny o .
T————‘ : HAL U 0oty ) Koty Az (F) 120D, (61)
— 1)1 Yox 1A U0ty ) ex{) 22/ Fex
1_ Ny—1— Ly g
Z) {(OlAl(fl)h}(JlAg(fz)lk) + (5 1AL () 101 Ap (f) | B} gy (5) *apy (1Da (k) 1252)
_T;“—f—n—, Dk | ayUlogts, D0, 142021920 + (iAs) oty )
t Ly v Ty
X (Gagiy 1 Az(F2) 12D} — (0lA1(f1)l><tIAz(fg)IJX'I’N‘Iaex(])I‘P N2, (62)
‘Z)k{(ilAl(f1)50)<j|A2(f2)lk) + <ilAl(fl)lkxjiAz(fz){0>}<\I'N1Iaex(1)*aex(1) "0 gy (R)] B3
3
Ny, N+
j E {(‘I”exlA (f]_)l(pex( })(‘pex{ }lAZ(fz) I@ 2> + <‘I’9X lAl(fl)I(pex(y )>
B 2 i b i Wl 1_N1_1__1
X <§Dex(7 }IAz(fz”q’ >} - E<”A1(f1)|]><]|A2(fz)IOX‘I" Iaex(l) !q’ (63)
-1 .,
(¢1A1(fy) l])(klAz(fz)llX‘I' | G (0)* By (B)* G ()20 (1) 1222 ———;—— E(‘I’exIAl(fl)"Pex{y })
i ko
X (<pex{7 }|A2(f2)|4>N2) - .Ek(ilAl(fl)lka!Az(fz) l])(‘l’exlaex(l)*aex(J)l‘Pe,?)- (64)
.2
-
Th in the last t the right-hand N 1 1 Ny,
sidi’;eoﬁeﬁlﬁsz)f 64) o rontifted with discon-  Muwp 1 0¥k | A1) o sy Xex iy 142 (f2) 12 )
nected matrix elements. N,—1
Obviously these terms are equal to the one- Oy, szy(‘lfg,“ AL (F)] ¢§x;y><cpix;ylA2(f2) 903,
particle intermediate state contributions to the N, —1
n-fold disconnected matrix elements (56)—(58). 1 (65)

Explicitly they read, respectively,

aNl,Nz_lzzng,g lAl(fmwéx;pw:x,.,lAz(fzm‘eizx

Ny

J. Math. Phys., Vol. 13, No. 2, February 1972

With these identifications, we may rewrite our
asymptotic series (32) in terms of disconnected
matrix elements:
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14, (FE A, ) e )

=T L n D ey

N>0 2>0 (m,;,m)>0 {y,,.... 5}

N N x5, N
) Pexiy,,... ,yN}x(Pex{yl .l. B [A5(f22) [®e2)

m, J

n

X {(1 = 85,100, 00m, 00y x,-10m. 4, + O vy 180 mpm1 F Oy w0, 1)

+ 8,000, 5,-103, 410 4B my N1

+ 6N N -15m N, (bN,N’flbm » N, + 5N.N6m ,N—l)
12 AR 1 1M 1 My &Yy

+ 0y, n,20 5, np10m LN Omy N1 '5N1 Ny 0NN Gml.Nl-léma N1

¥, xP J
+ GNI.N2+16m1.Nf1 (GN, Nl—lﬁmz.Nl-Z + 6N.N15m2,N1-1)]} + <‘I‘Vex1 ¥A1(f1 ! )Az(fzxz ) iq’ﬁ:%)cr (66)

where the connected part (last term) has the pro-
perties described in Theorem 3.

V. CONCLUDING REMARKS

In the foregoing sections we have reduced. the
timelike asymptotic behavior of many-particle
matrix elements of almost local fields to that of
one-particle and vacuum matrix elements plus a
remainder which decreases faster than any in-
verse polynomial. There remain two problems: (i)
What is the asymptotic behavior of these latter
matrix elements? (ii) How does the asymptotic
behavior in time depend on the smearing functions
in the space variables? The complete solution of
these two problems goes beyond the scope of the
present paper. It will be published in a separate
paper. Here we will only present a discussion of
the two simplest cases in order to show what one
has to expect.

A. Vacuum—One-Particle Matrix Elements
Since for f(x) € $; ® 0/ the matrix element

(May|A(fX)|0) = (21)3/2 [ a4pB(p0)6(p2 — M?)
x explipx}f (— PV, ®)* (May|A0)|0) (87)

is a smooth solution of the Klein—-Gordon equation,
it is bounded by (x0)-3/2 1,18

(May|A(F0) o>, CG0)-372,

- %

jCI< w0, (68)

However, this decrease changes rapidly if f(x) is
from S; ® 0f;. Take for instance:

f s @) = 0G0) ) (x2)s(3) 4,
Frs. () = (2m)3/2(5)r+s+k )

-~ arestk
X @(p9) (apl)r(ap2)5(8p3)k5(p)'

Introducing (69) into (67) we can integrate and
obtain:

o(x%) € S,

(May ’A(f(tr.s.n-r-s)) 10)
= in(2m)3 o

(apl)r (apz)s (aps)n-r—s

X 3 —@w: 9= w PNV 4y, (0)*(Mpy | 4(0) |0)
x e"P{in(P)t}glpw- (70)

In other words, in general, we obtain a poly-
nomial of degree (n — 1) in ¢ multiplied by an
oscillating function, if the wavefunction ¥, (P)
does not happen to vanish together with sufficiently
many derivatives forp = 0.

B. One Particle—One-Particle Matrix Elements

It can be shown by means of the stationary phase
method# that the matrix element

(May|A(F) I mbe) = (ampa/e [ 38R [

X f(wm(k) - (-UM(p)) \,/Ma(p)*‘pmb(k)
X {Mpy | A(0)| mke) expli[wy(p) — v, &)} (T1)

vanishes for £ — + © at least like ¢-3 if f(x) €5, ®
%3 (that means f(p) € S; ® 0y3).

However, if we take for f{x) the function (69) from
S; ® 0}, we can again perform one integration.
Performing furthermore the differentiations with
respect to P we get

<Ma'}’ {A(f(i',s.n'r-s)) {méd
= 3 tm [ dPpars(p) explilwylo) — v, @],
m=0 (72)

with a7;5(p) being from S;. For M = m, the
integral in (72) is from S, in ¢ as it easily follows
by a change of variables.

However, if M = m, we again obtain a polynomial
increase of degree »n for £~ + ©, The coefficients
of this polynomial can be expressed by physical
form factors and their derivatives with respect to
the invariant momentum transfer.13

As we have seen the asymptotic behavior in the
time variable of the leading terms depends very
sensitively on the choice of the smearing functions
in the space variables x. In contrast to the wide
spread belief it depends critically on the asymp-
totic behavior of the smearing functions in space-
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like directions. In both cases discussed here, it
changes from a decrease to a polynomial increase
if the smearing over the space variables is
changed from decreasing to increasing.
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By applying a theorem of Kuroda, we prove the existence and continuous completeness of the generalized
wave operators Wy(H,, H,), Ws(H |, H,), where Wi(H;, H)) = s — lime'Fj'e-*#:! x P, in the Hilbert space
L2(R3). P, is the projection operator on the subspace of absolute continuity of H;. H, is the self-
adjoint Hamiltonian for a particle in a pure Coulomb potential V, = ze2/ |1, and H, is the self-adjoint
Hamiltonian for a system described by the potential function V, + V, where V is a real-valued, measur-
able function of ¥ € R3, spherically symmetric [Vx) = V(r = lx l)], satisfies the condition

[ 2w tzar + [0+ Bive) ar <o

for some R(0 < R < ), some 0 <6 < 1 with z = 1, 2, and is continuous except at = 0. In conjunction
with our result, we obtain a bound for the radial Coulomb Green's function. Dropping the continuity
assumption on V, we have absolutely continuous completeness of the wave operators.

This is a brief paper to show the existence and
continuous completeness of the generalized wave
operators in L2(R3) for a system described by a
potential function V, + V. The function V, =
ze2/|x|,x € R3, is the Coulomb potential and V is a
spherically symmetric, real, measurable potential
function which satisfies, with » = |x|, xeR3,

foR r2|V(r)|2dr + f: (1 + »P1v{)idr <,
i=1,2 (1)

for some R(0 <R < ®) and some 0 <6 < 1. As
the potential is spherically symmetric, the seli-
adjoint Coulomb Hamiltonian H, in L2(R3) is de-
fined as the direct sum of Hamilionians H, =

27 Hi, HY acting in ¢! = L2(0, ®) x L2(R). L?(Q)

ilsothe 27 + 1 dimensional Hilbert space spanned
by the spherical harmonics and H} acts as the
identity on this factor. In L2(0, ©), H} is taken as
the self-adjoint operator obtained from the theory
of eigenfunction expansions by suitably restricting
the domain of the differential operator

_k2 a2  Rm2U+1) ze? @)

Ll =
1 omdrz  2m 72 y

For the characterization of the domain D(H}) C
L2(0, ), see Kodairal or Stone.2 For ! = 0,the
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additional condition #(0) = 0 is imposed on u
D(HY) to obtain a self-adjoint HY, as the point » = 0
is in the limit circle case. From the theory of
eigenfunction expansions and a knowledge of the
explicit solutions, the operator (H} — 1)~ can be
explicitly constructed and is an integral operator
of the Carleman type for A € Z(#{). The spectrum
of Hi, Z(H!), consists of a countably infinite dis-
crete spectrum in [— 22m2e4/2%2(1 + 1)2, 0) which
accumulates at 0 and is given by A, = — 22m 2e4/
2(l+n+1)2n=0,1,...) for Z<0 (for Z >0
there is no point spectrum) and 1 € [0, ©) belongs
to the absolutely continuous spectrum, The point
A = 0 is not an element of the point spectrum, We
denote by P} the projection operator on the sub-
space of absolute continuity of H{. H}, =H{ +V
with D(H}) = D(H}) C D(V) when V obeys the con-
ditions of (1). We will need the following theorem
of Kuroda3.

Theorem 1: Let K| be a self-adjoint operator in a
separable Hilbert space X and let V be a closed
symmetric operator in X, such that V is relatively
bounded with respect to K, with bound less than 1.
Then K, = K, + V is self-adjoint with D(X ) =
D).

ik, —¢)-1



268 A. H  VOLKEL

like directions. In both cases discussed here, it
changes from a decrease to a polynomial increase
if the smearing over the space variables is
changed from decreasing to increasing.
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is a Hilbert-Schmidt operator for some £ & Z(K)
(the spectrum of K); then W, (K,,K;) and W, (K,
K 2) exist and are absolutely continuous complete.

Wi(K].,Ki) = s — lime&jte-iK;'p
f-—>+00
where P, is the projection operator on the sub-
space of absolute continuity of K;. Also if K, is
lower-bounded then so is K.

We apply Theorem 1 by setting X = L2(0,©), K, =
HY, P, = P}. V is taken as the maximum multipli-
cation operator by V(») on L2(0, ) and |V|1/2 =
[V¥1/2 = |V(»)[1/2. Denoting K, by H} we have the
following theorem.

Theovem 2: For each ! with V satisfying the
conditions of (1), the generalized wave operators
W(HY,, HY), W (HY, HY) exist and are absolutely
continuous complete. Hzl is lower-bounded.

Proof: Using the integral representation of
Wichman and Wqo4 for the Carleman integral
operator (H% —A)-1, i.e., the radial Coulomb
Green's function, we show that the Carleman inte-
gral operators V(H} —A)-1 and IV|1/2(H} —)-1
are Hilbert-Schmidt for sufficiently large nega-
tive A. This calculation is carried out in the
Appendix. Since every v € D(H, — y)} = D(H}) can
be written as v=(H;— v) lu for some uc L21(0, o)
and y ¢ Z(H}) and V(H] — y)-1 is Hilbert—Schmidt,
D(V) © DH})., Furthermore ||[V(H{ —y)-1|-> 0 as
y — — © from (A30) so that V has H{ bound zero,
Thus the conditions of Theorem 1 are satisfied.

Turning to the three-dimensional problem, we de-
fine a self-adjoint H; to be the direct sum

oG
2> ® H! acting in the direct sum of Hilbert spaces
=0 o

¥ =25 ® ¥ Xis isomorphic to L2(R3) as shown
1=0
by Green and Lanford. 5 Defining P, = 25 P!, then

1=0

P, is the projection operator on the subspace of
absolute continuity of H;. From the fact that the
wave operators

Wi(H;, H) = s — limeiH;te-i8;tp,
§—>+00
exist iff the Wi(HJl,Hg) exist for each 76 and are
equal to the direct sum of the W.(Hi, H!), we then
have (noting Theorems 1, 2) the following:

Theovem 3: The generalized wave operators
Wi(H,, H,),W.(H,, H,) exist and are continuous

GI(VI, ,rll, A)
—ipr'r”

=T ¥ 1dT( — 70 fol at f:ods [s@ — o)< [s —

where j,(z), kD(z) are the spherical Bessel and
Hankel functions. Also G!(x,y,A) for o >x >y >0
is G¥(y,x,)). Setting € = 0, we obtain the free par-
ticle Green's function G/(x,y,):

G4, 3" ) = — ipr'r"j (prID(pr”).  (A3)

complete on L2(R3), when V satisfies the condition
of Eq.1 and is continuous except at » = 0.

Proof: The continuous completeness rather
than absolutely continuous completeness follows
from the fact that the continuous spectrum con-
sists of an absolutely continuous spectrum only as
shown by Kodaira.l

If H, is the free particle Hamiltonian rather than
the Coulomb Hamiltonian, then letting 6 = 0 in (1),
Theorem 3 still holds as seen from the estimate
of (A31). However this case is covered by a more
general theorem of Kuroda® using the theory of
forms. We tried to apply his method to the Cou-
lomb problem but we were not able to obtain the
necessary estimates. It would be interesting to
work out the relation between the time-dependent
theory and the time-independent theory for the
Coulomb problem as done by Ikebe,7 Green and
Lanford5 for the case of shorter-range potentials.
In doing this the definition of the scattering ampli-
tude for systems which are asymptotically Cou-
lomb may be clarified.

APPENDIX

1. Estimates for the Kernel of the Operator
(H, — 2)~1 (the CoulombRadial Green's
Function)

The Coulomb radial Green's function for each [ is
an integral operator whose real and imaginary
parts are Carleman kernels.2 We denote it by
G,(x,y:A), x,y € R, It is the inverse of the oper-
ator HY — x(x € C not an element of the spectrum
of H{Y), where H{!) is the self-adjoint operator
determined by the formal differential operator

B2 a2 m2IQ+1) , ze?

2mdr2 2m r2 72
acting in L2(0, ®) as defined by Stone2 and
Kodaira.l The operator (H® — A)-1 is bounded and
defined on all L2(0, ) for A ¢ Z(H1). In the case

of I = 0, we impose the boundary condition u(0) = 0
for elements v € D(HY).

2.,2
Forx ¢ [—”—?’— oo) with

L=

2
1/2
€='Zs p:(%) ’ ImP>0s Yzz;zm’
P (A1)

we use the integral representation of Wichmann
and Woo4 for the kernel G®(x,y;)1). We have with
%,y € (0,0),0>y>x>0,x=v,y=7r"

02

D]-ie x L [steislr'@-0-rma-)j, (pr' OhD(pr"s)],
(A2)
f
We use the representations
. 2! 1
= — s2)}
i (e) = Py f;le’”(l s2)ids, (A4)
H1)(g) = ﬂ + & ee + _L;l eiz, (A5)
: 21zl z1
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Note that for z = ip, p > 0, we have

K1)(ip) °C(
PP

Also for A < — y2h/2m, we have € = y/i¥, where

p = ik and |e] < 1. In making the estimates for
(A2) we consider the ¢ integral with the associated
7’ terms and the s integral with the associated "
terms separately.

a a
L2l ’1>epa >0. (A6)
pll

t integral:

Mk, 7' 1) =7'e k" f atr(t, & 7 J(t,k,r) (AT)

with
Lt e =

J, (k) =te

(1 —_ t)iet—ie,

rrt BV
914171

J, is a positive increasing function of ¢ and so is

i€ = -y/k

f e-kr's(1 — s2)ids,

J

(kr’)t nsa

1+ kr')t

M| < r'e-*r)e2rr
1+ kr)t*1

In (A7)-(A10), we have omitted numerical constants
which do not depend on &, 7'. In (A11), C, depends
only on ! being independent of &, »' for B> 9 [y la.
From (Al1), we obtain the free partlcle estimate
on setting ¢ = 1.

S-integral:
Mz Y, =7r A st,fd—szs, , 7 9
with
IZ(S’ €) = sie(s — 1)-te,
JZ(S’ k, y") — Sek""(l‘S)h(ll)(ik'r”s),

d/ds J,(s,k,7") has the form

l
l*l e-2p
pl*l

a
l+1>e—2P
pl

i J (s, k r")oze""”%(fl-g +
ds g\9, %, p2

(A13)

+2<a s N
1o p

with p = kr”"s. The expression in (A13) is a mono-
tone decreasing function of s along with all its
derivatives. However, we have not been able to ex-
ploit this fact. M, is then a sum of terms T,(1 <
n <1+ 1),the typ1ca1 one being majorized by

r7ekrt (% ste(s — 1)Fe | opns
T, G S p= e-2kr's,  (A14)
For » = 2, we have
1 e—kr
T, <——=— k> (A15)
"k (kr)n-1 2,

by setting e-*"s equal to e~2#" in (A14). For T,
we have
< %(kr")”’ke-kf”, k> 2lyl, (A16)

by changing variables to s’ = s — 1 and then to %=
kr"s’, Similarly,
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dJ,/dt for 0 < ¢ < 1. We majorize M, of (A7) by

e a\1/q
r’e"""(fol dt|11|a> <.I: dt’gf‘jll > ’
(A8)

where 1/a + 1/g=1,a,q > 1. For k > 2|y|a,
we have

M, ] < r’e"’”’(fol dt'zd? J1,q> l/q.

Writing ¢ = 1 + n, we have
1/¢ 1 d 1/q
;fo dtlEZJllé

d n
n/q
{[J]_] t= 1} l/q'

dt 1
Performing the integrals for % J I Iyl g, w
have s ® di“alib e e

M, <

(A9)

M| <v'etbr

=1

sretr |2 J1| (A10)

c, (r)n o k>l y y
e ’ € 3 2 a, 1 [4 + 1 q = 1.
B (1+ k)14 L4 (A11)

m i/
R L AP L T (A17)
Thus
wyi+lyl/ B

|M &, 7', 1) < C1 (LM R B> 2y,
k (k") (A18)

In (A18) C, depends on ! only for # > 2|y | and we
obtain the free particle estimate on setting |y | = 0.
Finally using (A11) and (A18) in (A12), we have for
p=ik,0 sx<y<oo,

1G,(x, ;1) |

(ex) 1 (1 + ky)iyV/®
<k(1 k)T ek>< PITY ky> (A19)

fork > 2lyla,a 1 +¢q71 =

2. Estimates for theQperator F(H{—2)"1

We now consider the operator FG, = F(H, —2)-1,
where F is a real-valued, measurable function of
% € [0, ) considered as a maximum multiplication
operator on L2(0, ). We want to obtain conditions
on F such that D(F) D D(H}) as this is part of the
relatively bounded cond1t10n To satisfy the condi-
tion that the H) bound of F is less than 1, we also
want | F(H} — -1l to go to zero asA—> — ©, To
this end note that for & > 2]y |a, the range of G, is
the domain D(H t — ) as the domain of G, ranges
through all L2(0, ). Thus if FG, has finite Hil-
bert—-Schmidt norm, we have

1FG Ny _sllullvu € L2(0, ©)
(A20)

so that D(F) D D(H!). Using the estimates of (A19)
for G;, we obtain sufficient conditions on F [see Eq.
(A30)i so that | FG,ll, g is finite. We have

f f [F(x)I21G,(x, v, ) 2dxdy

IFGull < IFG,)| lull <

1FG,I3. s =



ON THE EXISTENCE AND COMPLETENESS 271

= [ L0 dasay+ [0 (%[ layax
=R, + R, (A21)

We consider the first term of (A21) which satisfies

C
Ry <;2_fy-o

gy (LF Ry) 20y B
(1 + ky)2!

[ EAXD _ pipt)ady = R, + RY
0 (1 + kx)20*1/9
(A22)

We break (A22) further into integrals R and R'{,
where the R integral is over the tnangle 0€x <
¥ and 0 <y<Rforsome0 < R < © and the R}
integral extends over the rest of the triangle 0
x <yand 0 €y <o, Thus

B < C (0B, e2n)
17 p2 (By)2t

fy (kx)2(l"1)
0 (1 + kx)A1/Q

< -‘% ‘g " dve-2kX1 + ky)2iri/e _f(; Y (kx) 2e 2kx|Fx)|2dx

e-2ky

e 2kx| F{x)|2dx

R
< C(1 + kR) 2l fo dye-2ty fo”x:aezkxlpcx)lzdx,

(A23)
noting that s//(1 + s} is monotonic increasing
with maximum value 1 for s € [0, ®). Changing
variables to x” = x,2 = ¥ — x, we have

<l +kR)2W: [ dze-2rs f P2

20¥l/k R
S_QQ:“’?_L [ AP 2dx’.  (A24)
Similarly,

v C 1% o opy L+ Ry) BN/
Rlskzlz dye-2ky 220 20 0

(Rry)2?

B Y (Bx)2A*D )
W+ L (g ) <o IFeads |

<C Jg dye-2kye*24R(1 + ky)211I/k f x2|F(x)|2dx

+§._ fze e-2ky (By) A1-¢7 Y 1/0)dy VQ e2kx|F(x) 2dx

k
{A25)
Ry <% (L +ER)ZW [ 22l ()2’

+ };-f-é—ﬁ ( f |F(x")2dx’ + f x'zetF(x’)tde)
(A26)
Note that we have

E>2lyla, Va>2iylk, o l+g1=1,

s0 1>1—¢g1=0a"1>2|yl/kand

1+lyl/e>1~g1+lyl/k=8= a1+ Iy l/k

> 8lyi/fk,

and we may choose B arbitrarily close to zero by
taking %, o large. Thus combining (A24) and (A26)
we have

R
R <+ kR)2’7Vk fo x2lF(x)edx

f (1 + x)28)F(x)l2dx.  (A27)

ka 28

Letting v{, 8 = 0 in (A27), we obtain the free par-
ticle estimate.

We now obtain estimates for R,:
C ™ (1 + kx)2lyv/®
. 2 TR T ek
R2<k2£_0£,_0}()? o *
(y)20+D

(1 + ky)2& 170 (428

e2kvdydx.,

Replace
(ey)20+D
(1 +ky)2rv/o
by its maximum value in 0 <y <z,
{ex)20*D
(1 + kx)21/0)’

and perform the v integral to obtain

r, < [°1pw (bx)2

%
k3 Y0 (1 + kx)a ™ ne™)

< z fx:() x2F(x)|2dx

g (kx)Ae™-1y12 70D
(1 + kx)2e =iy1e™)

C o0
+;—"L Fx)!

s— f x2|F(x)|2dx

C
L 2 B
* e f IF(x)2(1 + x)28dx,
Combining (A27) and (A29), we obtain the desired
estimate for {A21)-namely,

(A29)

IFe,llg ¢ < E(l +kR>2Wk f x2|F(x)ledx

f (1 + x)28|F(x)I2dx,

k o (A30)

With v and g set equal to zero, we obtain estimates
for the case where G, is the free particle Green's
function G/, i.e.,

C (R
1Feilz o< % fo x2|F(x))2dx

+-§5 [ IF@iedx.  (A3D)
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Addendum: Linear Random Operator Equations in Mathematical Physics, |1
[J. Math. Phys. 12,1948 (1971)]
G. Adomian

Depavtment of Malthemalics, Universily of Georgia, Athens, Georgia 30601
(Received 19 October 1971)

Part of footnote 20 on page 1955 was omitted. The
addition should read as follows:

Since L~1 involves space as well as time variables,
G(t, ) is a simplified notation for G(¢, 7,7) and the
last term is actually:

f:o JIUG(t, 7,7)(82/9r2)a (7, T, wly (¥, T, w)dvdT.

For notational simplicity we have not shown specific
dependence on w or even 7;it is quite common to
suppress w. The integral is interpreted as being over
the appropriate space. |dT means a double integral
over a volume v and over all values of 7. In the ex-
pressions which follow for y,,v,, - -and K,,K3," -,
the double integrals are actually quadruple integrals,
etc.

Errata: Relativistic Fields Due to a Particle in a Grounded Cylindrical Box
{J.Math. Phys.11,1295 (1970)]

Richard L. Liboff*
Facullé des Sciences. Université Libre de Bruxelles, Brusscls, Belgium
(Received 14 October 1971)

The last equation in the right column of p. 1301
should read

U
|4 =0, 2
W/

and the first clause in the sentence following should
be deleted. These homogeneous contributions (given
in quadrature form in text) must be added, with
appropriate sign,to Egs. (9a) and (9b) to obtain the
correct fields for the case of the semi-infinite pipe.
They vanish in the limit £ = © so that Eq. (10) is cor-
rect as stated for the case of the completely infinite
pipe. Other corrections follow.

<

=

ct

page Location Change o
1296 bottom right 21q6(r) 41qd(r)
1297 right column %% J2

in E&M’ (two places)

* Permanent address: College of Engineering, Cornell University,
Ithaca, New York 14850.
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1297 bottom right  sgn{z — vt) 1
1298 right column  sinhK,z/L coshK z/L
in E, cosh(K, — @) sinh(K, — Q)
1300 left column sinhK;z/L coshK;z/L
in E, cosh(K; — Q,t) sinh(K; — th)
1302 Eq.10 4 2
1302 Eq.% in E, sinhykz coshykz
1302 middle of right coshk coshK(1 — z/L)
column
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